
Sharing-Aware Algorithms for Virtual Machine Colocation

Michael Sindelar
Google Inc.

1600, Amphitheatre Parkway
Mountain View, CA 94043
sindelar@google.com

Ramesh K. Sitaraman
Department of Computer

Science
University of Massachusetts

Amherst, MA 01003
ramesh@cs.umass.edu

Prashant Shenoy
Department of Computer

Science
University of Massachusetts

Amherst, MA 01003
shenoy@cs.umass.edu

ABSTRACT
Virtualization technology enables multiple virtual machines
(VMs) to run on a single physical server. VMs that run
on the same physical server can share memory pages that
have identical content, thereby reducing the overall mem-
ory requirements on the server. We develop sharing-aware
algorithms that can colocate VMs with similar page con-
tent on the same physical server to optimize the benefits
of inter-VM sharing. We show that inter-VM sharing oc-
curs in a largely hierarchical fashion, where the sharing can
be attributed to VM’s running the same OS platform, OS
version, software libraries, or applications. We propose two
hierarchical sharing models: a tree model and a more gen-
eral cluster-tree model. Using a set of VM traces, we show
that up to 67% percent of the inter-VM sharing is captured
by the tree model and up to 82% is captured by the cluster-
tree model. Next, we study two problem variants of critical
interest to a virtualization service provider: the VM Maxi-
mization problem that determines the most profitable subset
of the VMs that can be packed into the given set of servers,
and the VM packing problem that determines the smallest
set of servers that can accommodate a set of VMs. While
both variants are NP-hard, we show that both admit prov-
ably good approximation schemes in the hierarchical shar-
ing models. We show that VM maximization for the tree
and cluster-tree models can be approximated in polytime to
within a (1 − 1

e
) factor of optimal. Further, we show that

VM packing can be approximated in polytime to within a
factor of O(logn) of optimal for cluster-trees and to within
a factor of 3 of optimal for trees, where n is the number of
VMs. Finally, we evaluate our VM packing algorithm for
the tree sharing model on real-world VM traces and show
that our algorithm can exploit most of the available inter-
VM sharing to achieve a 32% to 50% reduction in servers
and a 25% to 57% reduction in memory footprint compared
to sharing-oblivious algorithms.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’11, June 4–6, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0743-7/11/06 ...$10.00.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on discrete structures; D.4.2 [Operating Systems]:
Storage Management—Main memory ; D.4.7 [Operating
Systems]: Organization and Design—Distributed systems

General Terms
Algorithms, Management, Measurement, Theory

Keywords
Virtualization, Optimization, Page Sharing, Bin Packing

1. INTRODUCTION
Modern data centers that incorporate large server farms

increasingly employ a virtualized architecture where applica-
tions run inside virtual machines (VMs) that are then hosted
on physical servers. An ever-increasing range of applications
utilize data center virtualization, including web hosting, en-
terprise applications, and e-commerce. The goal of a data
center service provider, such as a cloud computing provider,
is to maximize the utility that the VMs provide while con-
serving the required server resources such as memory and
CPU.

Virtualization technology enables multiple VMs to run on
the same physical server. VMs running on the same physical
server share resources such as CPU and memory by utiliz-
ing a key component called the hypervisor . To enable the
conservation of memory resources, modern hypervisors such
as VMware ESX support content-based sharing of memory
pages [14]. Specifically, if multiple VMs resident on the same
physical server use identical pages, content-based sharing al-
lows storing just one copy of the shared page. Thus, content-
based sharing decreases the memory footprint required to
host a set of VMs on a single physical server. The concept
of content-based sharing was first utilized in the Disco sys-
tem [1], and subsequently implemented in VMware ESX [14]
where the technique was shown to save as much as 33% of
the memory resources of a server. However, content-based
sharing is effective only if it is complemented by algorithms
that ensure that the VMs resident on each physical server
contain a significant amount of sharable pages. Specifically,
to truly utilize the potential of inter-VM page sharing and
to significantly reduce the aggregate memory footprint, it
is essential that VMs with the most shared pages are co-
located in the same physical server. This underscores the
importance of “sharing-aware” algorithms that “pack” VMs

into servers in a manner that VM page sharing is maximized
and the total memory footprint is minimized. The poten-
tial for exploiting inter-VM sharing by intelligent colocation
was recognized in [16] where the authors developed a finger-
printing scheme that provides a compact representation of
the memory pages in a VM. Such a scheme is an essential
step in identifying VMs with a large page sharing potential.
In our paper, we go further by developing formal models and
algorithms for sharing-aware placement of VMs on physical
servers. While we explicitly model only memory resources,
other resources such as CPU and network are additional
considerations in VM placement. Extending the results and
techniques in this paper to multiple resources is an impor-
tant direction for future work.

1.1 Our contributions
Our first contribution is the design of graph models to cap-

ture page sharing across a set of virtual machines and to em-
pirically demonstrate the efficacy of our models to capture
sharing in real systems. Our graph models of sharing form
the basis of our algorithmic study and are also likely critical
for future algorithmic studies in the area. We present a gen-
eral sharing model and two variants of hierarchical sharing,
namely the tree and the cluster-tree models. Our hierar-
chical models assume that shared pages between VMs can
be attributed to commonality in a hierarchy of dimensions
such as the OS platform, OS version, software libraries, and
types of applications. Using memory traces for a mixture of
diverse OSes, architectures, and software libraries, we find
that a tree model can capture up to 67% of inter-VM shar-
ing from these traces, whereas the more general cluster-tree
model can capture up to 82% of the inter-VM sharing. These
results demonstrate the utility of our models in capturing
real-world memory sharing.

Our second contribution is the formulation and develop-
ment of sharing-aware algorithms for two optimization prob-
lems that are key to a virtualization service provider: the
VM maximization problem and the VM packing problem.
We study these problems in the general sharing model as
well as in the two hierarchical sharing models. Interestingly,
we find that although the hierarchical sharing models ignore
some types of sharing, thereby reducing the sharing poten-
tial, they significantly help the design of provably-good ap-
proximation algorithms for these problems. Our theoretical
results are summarized in Figure 1.

Sharing Model VM Maximization VM Packing
General No approx Open

within 2(logn)δ

Cluster-Tree FPTAS O(logn)-approx
(Hierarchical)
Tree FPTAS 3-approx
(Hierarchical)

Figure 1: Summary of theoretical results

In the VM maximization problem, we are given a set of n
VMs, where each VM is associated with a profit value that
is earned by hosting that VM. Each VM consists of a set
of memory pages. We are also given m servers, each server
with a capacity of P pages. The goal of VM maximization
is to determine the subset of the VMs that can be hosted on

the m servers so that the total profit earned is maximized.
This problem characterizes the desire of a service provider to
maximize the earned profit for a fixed set of server resources.
We show that VM maximization is NP-Hard and is infeasible
to even approximate well in the general sharing model where
each VM can contain an arbitrary set of pages. Specifically,
we show that it is infeasible to derive an approximate solu-

tion that is within a factor of 2(logn)δ of optimal, for some

δ > 0, assuming that 3-SAT /∈ DTIME(2n
3/4+ε

). However,
we show that in the cluster-tree model and the special case
of a single server, we can devise a fully-polynomial time ap-
proximation scheme (FPTAS) that yields an approximate
solution that is at least a factor of (1 − ε) of the optimal
profit, for any ε > 0. Further, this result can be extended
to obtain an approximate solution that is at least a factor
of (1 − 1

e
) of the optimal profit for the VM maximization

problem with multiple servers.
In the VM packing problem problem, we are given a set

of VMs that must be hosted on physical servers, where each
VM consists of a set of pages. The goal of this problem
is to “pack” the VMs onto the smallest number of physical
servers, where each server has a capacity of P pages. While
VM packing is also NP-Hard, we show that we can efficiently
compute an approximate solution that is within a factor of
O(logn) of optimal for cluster trees and a factor 3 of optimal
for trees, where n is the number of VMs. From a theoret-
ical perspective, the VM packing problem is an interesting
new generalization of the well-studied bin packing problem.
Unlike bin packing, in VM packing the cumulative size of a
set of items (i.e., VMs) in a bin (i.e., server) can be smaller
than the sum of individual item sizes due to sharing. Note
that if sharing is ignored, VM packing reduces to traditional
bin packing.

The VM packing problem fundamentally characterizes the
goals of a service provider to host a set of VMs using the least
amount of server resources. The service provider will need
to periodically allocate VMs to servers in a sharing-aware
fashion, either as a part of the initial placement of newly-
created VMs or as part of a“repacking”operation of existing
VMs [16]. A periodic repacking would be necessary as both
the pool of existing VMs and the sharing characteristics of
individual VMs change over time, making the initial packing
potentially suboptimal.

Our third contribution is an experimental evaluation of
our VM packing algorithm for the tree model of sharing
on actual end-user VM traces. We find that our sharing-
aware algorithm reduces the number of servers required by
32% to 50% when compared to a sharing-oblivious Modified
First Fit Decreasing (MFFD) bin packing algorithm. Our
algorithm also significantly reduced the memory usage with
the total memory footprint across all servers decreasing by
25% to 57% when compared with any sharing-oblivious al-
gorithm. We further show that loading each server to at
most 90% of memory capacity produces colocations that are
stable with respect to the fluctuations in the VM’s memory
usage and inter-VM sharing over time.

2. VM MEMORY SHARING: PROPERTIES
AND MODELS

We present three models that capture inter-VM memory
page sharing with different levels of complexity. We then use
real VM traces to show that a significant portion of the inter-

VM page sharing can be captured by simpler structured hi-
erarchical models that facilitate the design of provably good
sharing-aware VM colocation algorithms.

2.1 Graph models for page sharing
Our first model is the general sharing model that can ac-

curately capture all inter-VM sharing. In this model, each
VM consists of an arbitrary set of pages. One can view this
as a hypergraph G = 〈V, E〉, where V is the set of VMs and
each hyperedge e ⊆ E denotes a memory page that is shared
by all the VMs in the hyperedge. Clearly, the general shar-
ing model can capture arbitrary sharing of pages between
the VMs.

In the two hierarchical sharing models that we propose,
sharing cannot be arbitrary and only some forms of sharing
can be captured. First, we propose a tree model where shar-
ing is modeled as a rooted directed tree T = 〈V,E〉 where
the edges are directed away from the root and towards the
leaves (See Figure 2). Each node in v ∈ V is associated
with w(v) distinct pages. Each leaf corresponds to a VM
and pages that are unique to that VM are associated with
it. The pages associated with a non-leaf node v is shared by
all the VMs that correspond to leaves of the subtree of T
rooted at node v. Thus, the set of all pages in a VM is the
union of all pages associated with nodes on the correspond-
ing root-to-leaf path in T.

An example of a tree sharing model is shown in Figure 2
where one can view each level of bifurcation as representing
dimensions such as OS, OS version, or software libraries.
Page sharing between any two VM’s is attributed to com-
monality in those dimensions. For instance, the pages shared
across all VMs is captured in the root in the first level of the
tree. VMs running the same OS platform may share a set
of pages related to that OS and is captured in the second
level of the tree. If they both also run the same OS version
there is additional sharing captured at the third level of the
tree. Even more sharing occurs if they also use the same
software libraries that is captured in the fourth level of the
tree. Finally, pages that are unique to the VM is captured
in the corresponding leaves of the tree.

A more general version of the hierarchical sharing model
is the cluster-tree model whose nodes and edges are “clus-
tered” into super-nodes and super-edges respectively, and
the super-nodes and super-edges form a rooted directed tree
(See Figure 3). More formally, a cluster-tree consists of a
rooted directed tree T = 〈V,E〉, where each v ∈ V is a super-
node and each (u, v) ∈ E is a super-edge. Each super-node
v ∈ V contains a distinct set of one or more nodes denoted
by Γ(v) such that for u 6= v, Γ(u) ∩ Γ(v) = ∅. Each super-
edge (u, v) ∈ E contains a distinct set of one or more directed
edges denoted by Γ(u, v) where Γ(u, v) ⊆ Γ(u)× Γ(v). The
width of a cluster-tree denoted by k equals the maxv∈V |Γ(v)|
and is assumed to be a constant. Note that setting k equal
to 1 reduces a cluster-tree to the simpler tree model. There-
fore, any algorithmic results for the cluster-tree model also
apply to the tree model.

A cluster-tree can be used to model a more complex form
of inter-VM sharing as follows. As before, each node v is as-
sociated with w(v) distinct pages. Each super-node that is
a leaf of T corresponds to a VM and contains a single node.
Let a VM correspond to a leaf super-node that contains a
single node v. All unique pages of that VM are associated
with node v. Further, the set of all pages in that VM is the

root

Mac

ver1 XP win7 ver1 ver2ver2

32bit
libs

64bit
libs

32bit
libs

64bit
libs

VM VM VM VM VM VM VM VM

Win Linux

.

. . . .

Figure 2: Tree model example

mail

root

VM VM VM

browser o ce http database PHP

VM VM VM

Server Apps
Supernodenode

Desktop Apps
Supernode

Figure 3: Cluster-Tree model example

union of all pages associated with nodes u such that either
u = v or u has a (directed) path to v. For instance, the
leftmost VM in the cluster-tree of Figure 3 contains the
unique pages associated with its leaf node, the pages asso-
ciated with the “mail” and “browser” nodes that are shared
with other VMs that use those desktop applications, and the
pages associated with the root node that are shared with all
VMs in the cluster-tree.

The cluster-tree model captures page sharing more accu-
rately than the tree model in certain situations. As a hypo-
thetical example, a set of VMs might be using desktop ap-
plications, while another set of VMs might be using server
applications (See Figure 3). However, each VM may use
only a proper subset of these applications. To capture this
situation one can use a single super-node to represent desk-
top applications, and another super-node to represent server
applications. The super-nodes contain individual nodes rep-
resenting each individual application. We can then connect
each leaf representing a VM to the proper subset of the nodes
representing applications that the VM uses, thereby model-
ing the sharing more accurately. For instance, in Figure 3,
the leftmost VM only uses a subset of the desktop applica-
tions, namely “mail” and “browser’ but not “office”. We have
found that a cluster-tree with small constant width is typi-
cally sufficient for effectively capturing additional inter-VM
sharing.

2.2 Empirical analysis of inter-VM sharing
Both the tree and cluster-tree hierarchical models are more

structured than the general model, but they typically do not
capture all of the inter-VM page sharing that exists in a set
of VMs. However, using VM memory traces, we show that in
practice these two models are able to capture a majority of
the inter-VM sharing. The intuitive reason for their efficacy
is because the structure of these models reflects how VM
sharing occurs in practice. Typically the amount of mem-
ory pages that are shared between any two VMs depends

on the OS platform, OS version and the software libraries
utilized by those VMs. For example, more memory pages
are likely to be shared between VMs running the same OS
platform (e.g.,between two Mac or two Windows VMs) than
between those running different OS platforms (e.g., between
a Mac and a Windows VM). Similarly, there is likely to be
more sharing between VMs running the same OS versions.
For instance, more sharing is likely between two VMs that
both run Windows XP and than two VMs that run Windows
XP and Windows 7 respectively. Finally, software libraries
also govern the amount of likely sharing—similar libraries
and library versions will yield more sharing. As depicted
in Figures 2 and 3, hierarchical models are well suited to
capture such sharing by grouping VMs based on the OS
platform, OS version, software library versions and so on. A
limitation though is when VMs with the same OS platform
and version run different overlapping subsets of application
processes or have different overlapping subsets of software
libraries installed on them. Sharing of this nature is not
easily captured by hierarchical models.

2.2.1 Trace description
To evaluate the models and algorithms in this paper, we

use a set of VM memory traces. Our dataset consists of
traces from over 50 machines. We gathered memory traces
from 31 volunteer machines in our department over a 9
month period. Since these volunteer machines comprised of
only a subset of OS platforms and versions that we wanted
to study (e.g., Windows machines and newer Linux versions
were under-represented in our volunteer dataset), we setup
20 additional virtual machines in our laboratory testbed and
also gathered traces from these synthetic machines, giving
us the full diversity of OS platforms, OS versions, and soft-
ware libraries for our study. Table 1 summarizes the various
machines in our trace dataset.

OS CPU RAM
Mac OSX 10.5 PowerBook 6, PowerPC 1152MB
Mac OSX 10.5 i386 1GB,2GB

Centos Linux 4.4 Intel x86 1GB,2GB
Centos Linux 5.4 Intel x86 256MB
Centos Linux 5.4 Intel x86 1GB,2GB
Centos Linux 5.5 Intel x86 512MB
Centos Linux 5.5 Intel x86 1GB,2GB
Centos Linux 5.5 Intel x86 VMware 1536MB
Mac OSX 10.6 Intel x86 VMware 1536MB

Ubuntu 10.4, 10.10 Intel x86 VMWare 1536MB
Windows XP SP2 Intel x86 VMWare 1536MB

Windows 7 Intel x86 VMWare 1536MB

Table 1: Configuration of machines used to gather
memory traces in our study

2.2.2 Properties of inter-VM sharing
We first consider the amount of inter-VM page sharing

that is present under the general sharing model. If all vir-
tual machines are allocated to a hypothetical physical server
with infinite memory capacity, then approximately 13% of
pages can be removed due to inter-VM sharing.1 As shown
in Table 2, the average sharing between pairs of Windows

1As in [16], our analysis assumes that self-shared pages—
duplicated pages within a VM—are removed prior to com-

Linux Windows Mac
Linux 2.24% 0.09% 0.02%

Windows 8.83% 0.16%
Mac 3.29%

Table 2: Average sharing between VM pairs across
OS platforms.

CentOs 5.5 Ubuntu 10.4 Ubuntu 10.10
CentOs 5.5 10.56% 0.37% 0.38%

Ubuntu 10.4 13.99% 4.51%
Ubuntu 10.10 13.80%

Table 3: Average sharing between VM pairs across
Linux OS versions

machines was about 8.83%. Between Linux machines, the
average was 2.24%. Not surprisingly, the average sharing
across OS platforms (i.e., across Windows, Linux, and Mac
machines) was at most 0.2%, i.e., it was an order of magni-
tude smaller. The inter-VM sharing increased significantly
when the OS version used by the VMs were also the same.
Table 3 shows the sharing observed across OS versions of
the same OS platform. Since the trends are similar across
OS platforms, only results for some Linux versions are shown
here as a representative example. Note that while we observe
10-14% sharing across VMs running the same Linux OS ver-
sions in Table 3, the sharing drops to 4.5% for different ver-
sions of the same Linux Ubuntu distribution. Finally, we
find little sharing across different Linux distributions (e.g.,
Centos and Ubuntu).

2.2.3 Efficacy of the tree and cluster-tree models
To study the efficacy of the tree and cluster-tree models,

we selected traces from the 20 virtual machines in our labo-
ratory testbed that comprised our synthetic data set. This
provided us with a more controlled sample that represented
the full diversity of OS platforms, OS versions, and soft-
ware libraries. Specifically, our chosen data set represented
all three OS platforms: Macs, Windows and Linux and a
multitude of OS versions (Ubuntu 10.4 and 10.10, CentOS
5.5, Windows XP and 7, and Mac OS X 10.6); where avail-
able, we chose 32- and 64-bit OS versions as separate traces.
The VM traces used in this experiment were carefully cho-
sen to represent both server as well as desktop environments.
Our desktop VMs comprised libraries and running processes
for OpenOffice.org (v. 3.2), Firefox (v. 3), Adobe Flash (v.
10.1), and iTunes (v. 10.1), while our server VMs comprised
libraries and processes for Apache 2, PHP 5, and MySQL 5.

We built hierarchical models for our chosen set of VM
traces to study how much of the inter-VM sharing can be
captured by these models. Our traces lend themselves natu-
rally to a tree model which we consider first (See Figure 2).
We constructed a tree with a single root that represents the
set of all VMs, that has a child for each OS platform (Mac,
Linux, Windows), that each have children for each OS ver-
sion, which in turn have children for 32- and 64- bit versions
of the software libraries. The leaves of the tree are indi-
vidual VMs that run our desktop and server applications.
Starting with the root, at each node v, we computed the

puting inter-VM sharing. Our traces contained around 9.5%
self-shared pages.

Tree Cluster-Tree
OS 0.24% 11.37%

OS Ver 11.48% 15.68%
32- v 64-bit libs 55.27% 55.28%

Total 67.01% 82.33%

Table 4: Percentage of sharing captured in the two
hierarchical models

pages that are common to all VMs that are descendants of
v and associated those pages with node v. Subsequently,
these pages were removed from the VMs that are descen-
dants of v and the process was repeated recursively for each
child of v. Note that that this process captures some but
not all of the inter-VM sharing. Specifically, if a page p is
shared between two VMs u and v but p is not present in all
VMs that are descendants of the lowest common ancestor of
u and v then page p is not captured by the tree model of
sharing. However, for our VM traces, we found that the tree
model captures 67% of the inter-VM sharing when compared
to the general model that captures all inter-VM sharing (See
Table 4).

The tree decomposition also provides insight into the amount
of sharing at different levels—the amount of sharing in-
creases as we descend down the tree. That is, only a small
fraction of the sharing is attributable solely to the OS plat-
form; a larger fraction is attributable solely to the same
OS version, and a even greater amount to the architecture-
dependent software libraries. At the software library level,
55% of the sharing is captured, even across VMs running
different sets of applications. Thus, most of the inter-VM
sharing comes from pages specific to the OS and software
library versions of a VM.

One notable limitation of the tree model constructed above
is that it fails to capture sharing due to 64-bit VMs that run
both 32-bit and 64-bit software libraries. In the tree model
of Figure 2, a VM can either use 32-bit software libraries
or 64-bit software-libraries, but not both. Our cluster-tree
model can be made to capture such sharing in the following
manner. We convert each node of the tree to be a super-
node that can contain one or more nodes. Then, we include
a special node in each super-node that captures the pages
that are shared between all 32-bit software libraries (in our
case, 32-bit OpenOffice libraries installed on both 32- and
64-bit VMs). In this fashion, we are able to account for
an additional 15% of sharing, giving a total of 82% of po-
tentially sharable pages being captured by our cluster-tree
model (See Table 4).

In summary, our hierarchical models are able to capture
a significant amount of inter-VM sharing—in our analysis,
a simple tree structure could account of 67% of the total
sharing, while adding a small amount of complexity enabled
a cluster-tree of width 2 to capture 82% of the sharing. As
we show next, such hierarchical models also enable design
of provably-good approximation algorithms for exploiting
inter-VM sharing.

3. ALGORITHMS FOR VM COLOCATION
We study two colocation problems from the standpoint of

a virtualization service provider. First, we study the VM
maximization problem where we are given m servers that
can each hold P memory pages, a set of virtual machines

V = {v1, v2, · · · vn}, and a profit function p : V → Z+. Each
virtual machine vi is represented as a set Pi of pages. The
goal is to find a set V ′ ⊆ V such that V ′ can be packed into
the m servers such that the memory capacities of the servers
are not exceeded and the profit

P
vi∈V ′ p(vi) is maximized.

We also study the VM packing problem where we allocate
a set of virtual machines to servers such that total number of
servers is minimized, i.e., the hardware resources utilized by
the service provider are minimized. Specifically, we are given
a set of virtual machines V = {v1, v2, · · · vn}, where each
virtual machine vi contains a set of pages Pi. The goal is to
allocate all VMs to servers such that the memory capacity
P of each server is not exceeded and the total number of
servers are minimized.

Both the VM maximization problem and the VM pack-
ing problem are NP-Hard, since they contain the knapsack
problem and the bin-packing problem respectively as special
cases when VMs do not share pages. However, as we shall
see, the complexity of finding a provably approximate solu-
tion to either colocation problem is crucially dependent on
the page sharing model.

3.1 General Sharing
The advantage of the general sharing model where any

VM can contain any subset of pages is that all inter-VM
sharing can be captured in this model. However, provably-
good polytime approximation algorithms for VM colocation
may not exist in the general sharing model. For instance,
we can show that the VM Maximization is hard to even
approximate in the general sharing model.

Definition 3.1.1 (Densest k-subhypergraph Problem).
Given a hypergraph G = (V,E) and a parameter k, the dens-
est k-subhypergraph problem is to find a set of k vertices
with maximum number of hyperedges in the subgraph induced
by this set.

Theorem 3.1.2 (Hajiaghayi et. al. [6]). The dens-
est k-subhypergraph problem is hard to approximate within a

factor of 2(logn)δ for some δ > 0 under the assumption that

3-SAT /∈ DTIME(2n
3/4+ε

).

Theorem 3.1.3. The VM Maximization problem is hard

to approximate within a factor of 2(logn)δ for some δ > 0

under the assumption that 3-SAT /∈ DTIME(2n
3/4+ε

).

Proof. Let each page be a vertex in a hypergraph and
each VM be a hyperedge that connects each vertex corre-
sponding to a page contained in the VM. Further, let the
profit of packing any VM be equal to 1. Then the problem
of maximizing the number of VMs allocated to a server of
size k is simply finding the densest k-subhypergraph. The
result follows from Theorem 3.1.2.

The complexity of approximating the VM packing prob-
lem in case of general sharing is open (See Figure 1).

3.2 Hierarchical sharing
The hierarchical sharing models do not capture all sharing

that exists between VMs, but as we concluded in Section 2,
it captures the majority of the sharing that exist between
VMs. As we show in this section, the advantage of the hier-
archical models is that it is more amenable to provably-good
polytime approximation algorithms for both VM maximiza-
tion and VM packing.

3.2.1 VM Maximization
We now show that in the hierarchical sharing model the

VM maximization problem admits good approximation al-
gorithms in the form of an FPTAS (fully polynomial time
approximation scheme). In this section, we use the more
general cluster-tree model of hierarchical sharing. The re-
sult also holds for the tree model, since the tree model is a
special case of the cluster-tree model.

First, we develop a dynamic programming solution for
the simpler version of the problem where we have only one
server, using the left-right dynamic programming technique
of [7]. We are given a cluster-tree T = 〈V,E〉 where each leaf
of T represents a VM and contains a single node v whose
packing yields a profit p(v) ∈ Z+. Each non-leaf is super-
node consisting of at most k nodes, where k is the width of
the cluster-tree. The profit values p(v) are uniformly zero
for any node v contained in a non-leaf super-node, i.e., profit
is gained only on a leaf node which results in an entire VM
being packed. Each node v is either contained in a leaf or
is contained in a non-leaf super-node of T. Recall that each
node v is associated with a set of w(v) distinct pages. Note
that the pages associated with leaves are unique to that VM
and the pages associated with nodes contained in non-leaf
super-nodes are potentially shared between multiple VMs.
Let χ [c, σ, j, β] be the smallest size (number of pages) that
must be packed into the single server to achieve a profit of at
least β, with the constraint that only the subset σ of nodes
contained in super-node c is packed and the remainder of
the nodes are selected from trees rooted at the first j child
super-nodes of super-node c.

χ [c, σ, 0, β] =

 P
v∈σ w(v) if

P
v∈σ p(v) ≥ β

∞ if
P
v∈σ p(v) < β

Let cj be the jth child of c and C′ be the set of all subsets
σ′ of nodes in super-node cj such that σ′ and σ are compati-
ble, i.e, for any node v ∈ σ′ all parents of v are included in σ.
(Note that compatibility ensures that a node is packed only
if its ancestors are also packed.) Thus, χ [c, σ, j, β] equals

min
0≤β′≤β


χ
ˆ
c, σ, j − 1, β − β′

˜
+ min
σ′∈C′

χ
ˆ
cj , σ

′, degree(cj), β
′˜ff ,

where degree(cj) is the number of children of super-node
cj . Let B =

P
v p(v) be an upper bound on the maxi-

mum achievable profit. Once the entire table χ [c, σ, j, β] is
computed for all c ∈ V and 0 ≤ β ≤ B, we can extract
the answer from the table as follows. The maximum at-
tainable profit is simply the largest value of β such some
entry χ [root(T), σ, degree(root(T)), β] is at most the server
capacity P .

The run time of our dynamic programming solution can
be evaluated as follows. Without loss of generality, there
are O(n) super-nodes and super-edges in the cluster-tree
since each super-node can be assumed to have more than
one child, where n is the number of VMs. The χ table has
O(2knB) entries, since each super-node contains at most k
nodes, the number of super-edges is O(n), and B is an up-
per bound on the maximum achievable profit. Each entry
can be computed in O(2kB) time. Thus, the total running
time of the algorithm is O(22knB2), which is O(nB2) if we
assume that the width of the cluster-tree k is a constant.

Theorem 3.2.1. For the single-server VM maximization

problem in the cluster-tree sharing model, our algorithm pro-
duces a solution that is at least (1− ε) of optimal with a run
time of O(n5/ε2), where n is the number of VMs. That is,
there exists an FPTAS for the VM maximization problem in
the cluster-tree sharing model.

Proof. We can extend the dynamic programming solu-
tion to create an FPTAS for single-server VM maximization.
Analogous to the FPTAS for the knapsack problem [7], we
derive an approximation by rounding the profit values of the
VMs. For each node v, we round the profit values to cre-

ate a new profit value p̃(v) =
j
p(v)
K

k
for some K = ε pmax

n
,

where pmax = maxv p(v). With the rounded profit values,

the maximum profit B̃ = O(1
ε
n2). The running time is then

O(nB̃2) = O(n
`

1
ε
n2
´2

) = O(n5/ε2).

Let X̃ be the solution obtained by our approximation al-
gorithm using the rounded profit values. The profit obtained
by solution X̃ is z̃ =

P
v∈X̃ p(v). Likewise, let X? be the

optimal solution obtaining a profit of z? =
P
v∈X? p(v).

z̃ =
X
v∈X̃

p(v) ≥
X
v∈X̃

K

—
p(v)

K

�
≥
X
v∈X?

K

—
p(v)

K

�
(1)

≥
X
v∈X?

K

„
p(v)

K
− 1

«
=
X
v∈X?

(p(v)−K) = z? − |X?|K, (2)

where the last inequality in Equation 1 follows from the fact
that X̃ is the optimal solution for the rounded profit values
and hence obtains at least as much profit as X?. It follows
from Equation 2 and the fact that K = εpmax/n ≤ εz?/|X?|,

z? − z̃
z?

≤ |X
?|K
z?

≤ ε.

Thus, we have proven the theorem.

We now generalize the result for the single-server VM
maximization problem to the VM maximization problem
where we have m ≥ 1 physical servers for hosting the VMs.
We utilize the results in [4] for the Separable Assignment
Problem (SAP) where the authors show that a β-approximation
for a single-server problem can be converted using LP-rounding
to a

`
1− 1

e

´
β-approximation algorithm for the multi-server

problem. Further, in the cases where the single server prob-
lem admits an FPTAS, the result can be strengthened to
provide an approximation ratio of (1 − 1

e
). Thus, we can

state the following theorem.

Theorem 3.2.2. For the multi-server VM maximization
problem in the cluster-tree sharing model, there exists a poly-
time algorithm that produces a solution that is at least (1− 1

e
)

of optimal, where n is the number of VMs and e is the tran-
scendental number.

3.2.2 VM packing
In the VM packing problem, we are given a set of virtual

machines V = {v1, v2, · · · vn}, where each virtual machine vi
contains a set of pages Pi. The goal is to allocate all VMs
to servers such that the memory capacity P of each server is
not exceeded and the total number of servers are minimized.

First, we consider the VM packing problem in the cluster-
tree sharing model. We can apply our algorithm for VM
Maximization to derive a solution for VM packing as follows.

1. Set the profit value of all VMs to be 1. Run the VM
maximization algorithm with the number of servers

m successively set to 1, 2, 22, · · · 2i, · · · , until at least
(1− 1

e
)n VMs are successfully packed by the algorithm.

2. Let m∗ be the number of servers where step (1) suc-
ceeds. Repeatedly run our VM Maximization algo-
rithm on the remainder of the unpacked VMs using
m∗ servers each time, until no more VMs are left.

Theorem 3.2.3. The above algorithm runs in polynomial
time and achieves a solution that is within O(logn) factor
of optimal for the VM packing problem on a cluster-tree T
with n VMs.

Proof. Let OPT be the minimum number of servers
needed to pack cluster-tree T. For any m ≥ OPT , we know
that our VM maximization algorithm packs at least (1− 1

e
)n

VMs into m servers, since each VM is assigned unit profit,
the optimal profit is n, and Theorem 3.2.2 guarantees that
our VM maximization algorithm achieves at least (1− 1

e
) of

the optimal profit. Thus, the m∗ achieved in the step (1) of
the above algorithm is at most 2 ·OPT − 2. Each time the
VM maximization algorithm is run in step (2), the number
of VMs left unpacked reduces by a factor of 1

e
. Thus, in

at most dlnne rounds all VMs will be packed. The total
number of servers used is at most

m∗dlnne ≤ (2 ·OPT − 2)dlnne = O(logn) ·OPT.

Our algorithm for VM packing runs in polynomial time since
our polynomial time algorithm for VM Maximization is in-
voked O(logn) times.

For the simpler tree model, we now show that we can
obtain a better approximation algorithm. Specifically, we
present a 3-approximation algorithm for the VM packing
problem in the tree model. We first compute a lower bound
on the optimal number of servers needed to pack tree T.
Next, we design a “greedy” algorithm that produces a pack-
ing solution for T that is within a factor 3 of this lower
bound, and hence within a factor 3 of the optimal.

A fractional packing lower bound for the tree model.
One may think of the lower bound as the number of servers

utilized by a“lower-bounding process” (LB process) that can
fractionally pack VMs into servers. Since the LB process can
split the pages associated with the nodes in tree T between
multiple servers in a manner that a VM packing algorithm
cannot, this fractional packing provides a lower bound on
the number of servers that may or may not be achievable
by a VM packing algorithm. Observe that the available
server capacity varies as we move up the tree. The server
capacity available at the root, denoted by cap(root(T)), is
the full server capacity of P . The capacity of any node v,
cap(v), can be inductively defined to be the residual capacity
after packing all the ancestors of v that are required to be
present at the server, i.e., cap(v) = cap(parent(v)) − w(v).
Alternately,

cap(v) = P −
X

v′ is ancestor of v

w(v′).

The LB process packs tree T in a bottom-up fashion as fol-
lows.

1. Pack each leaf v all by itself in a server of capacity
cap(v).

2. Suppose that a non-leaf node v has children vi, 1 ≤
i ≤ l. Inductively, suppose that each tree rooted at
vi, 1 ≤ i ≤ l, has been packed “perfectly” by the LB
process into servers of capacity cap(vi) = cap(v)−w(v)
each. In a “perfect” packing all servers are full except
possibly the last one. The LB process packs the tree
rooted at v simply by consolidating the (at most l)
partially-filled servers of its children into some number
of full servers and at most one partially-filled server.
This consolidation is easily achievable since the LB
process is allowed to split any node across multiple
servers. The full servers of its children are not repacked
in any way. Finally, the server size is increased to
cap(v) = cap(vi) + w(v) and a copy of v is added to
each server to fill this increased capacity.

Let size(v) represent the total size (in pages) required by
the LB process to pack the subtree rooted at v. Note that
size(v) incorporates the weight of each node multiplied by
the number of copies of the node that were made. Further,
let the count(v) denote the number of servers with capacity
cap(v) needed by the LB process to pack the tree rooted at
v. Equivalently, count(v) can be thought of as the number
of copies of node v made by the LB process. The following
inductive relationships hold. For each leaf v, size(v) = w(v)
and count(v) = 1. For each non-leaf node v with children
vi, 1 ≤ i ≤ l,

count(v) =

&Pl
i=1 size(vi)

cap(v)− w(v)

’
(3)

size(v) =

lX
i=1

size(vi) + count(v) · w(v) (4)

Theorem 3.2.4. Any VM packing algorithm for tree T
must pack at least size(root(T)) pages and utilize at least
count(root(T)) servers.

Proof. We prove the theorem inductively starting from
the leaves of T. In the base case, the theorem is clearly
true for the leaves. Let a non-leaf node v have children vi,
1 ≤ i ≤ l. Assume inductively that any algorithm requires
at least size(vi) pages to pack the trees rooted at vi, for
1 ≤ i ≤ l. Using Equation 3, we infer that any algorithm
requires at least count(v) copies of node v. Thus, using
Equation 4, any algorithm must have size at least size(v),
since an additional count(v) copies of v with w(v) pages per
copy are required.

A greedy packing algorithm.
Our algorithm GREEDY packs tree T as follows.

1. Run the LB process to compute size(v) and count(v)
for each node in T.

2. If the count(root(T)) = 1, then the entire tree T is
packed into one server by the LB process. Likewise, the
algorithm can pack the entire tree T into one server.

3. Else, if count(root(T)) ≥ 1, do the following.

(a) Let k be the smallest count value of some node
in T such that k > 1. Pick a node v with count
k such that all its children have a count value of
1. View the set of VMs that are descendants of

a child of v as a single item, resulting in as many
items as the number of children of v. Note that
each item fits into a single server of capacity P .
Pack all items into servers of capacity P using any
good bin packing algorithm, such as First Fit2.
Now, all the VMs that are descendants of v have
been packed.

(b) Remove the subtree rooted at v from T to form a
new tree T′. Recursively, run GREEDY on T′.

Lemma 3.2.5. In step 3(a) of the GREEDY algorithm,
the number of servers used to pack the tree rooted at v is at
most 2 · count(v)− 1 servers.

Proof. Note that the First-Fit algorithm ensures at most
one server is filled to half or less of its capacity, since any
two such servers would have been combined by First-Fit into
one server reducing the server count. Thus, since the LB
process packs the tree rooted at v in count(v) servers, our
algorithm needs at most 2 · count(v)− 1 servers to pack the
same contents, since otherwise two or more servers would be
at most half full.

Theorem 3.2.6. Algorithm GREEDY packs tree T using
a number of servers that is within a factor of 3 of the optimal
solution.

Proof. We use induction on count(root(T)). The base
case of count(root(T)) = 1 is trivially true since GREEDY
packs T in one server. Inductively, if count(root(T)) > 1,
the tree T′ constructed in step 3(b) has a smaller count
value than T. Note that the LB process constructs at least
count(v)− 1 full servers at v. These full servers constructed
by the LB process at node v will remain in its final packing
of T unchanged, and is guaranteed to disappear when the
tree rooted at v is removed to form T′. Thus,

count(T′) ≤ count(T)− count(v) + 1. (5)

Applying the inductive hypothesis to T′, the algorithm packs
T′ using at most 3 · count(root(T′)) servers. Additionally,
by Lemma 3.2.5, the tree rooted at v in step 3(a) of the
algorithm can be packed in 2 · count(v) − 1 servers. Thus,
using Equation 5, the total number of servers used by the
algorithm on tree T is at most

3 · count(T′) + 2 · count(v)− 1

≤ 3 · (count(T)− count(v) + 1) + 2 · count(v)− 1

≤ 3 · count(root(T)), since count(v) ≥ 2.

4. EXPERIMENTAL EVALUATION OF VM
PACKING

We experimentally evaluated the performance of our al-
gorithm GREEDY for VM packing in the tree model. To
quantify the packing benefits due to real-world sharing that
occurs from actual usage, we only used traces from our 31
volunteer machines (which represent “real” workloads) and

2While First Fit does not specify an order for processing the
VMs, we have empirically observed that starting by placing
two VMs that share the most pages in a server and consec-
utively picking the VM that shares the most with the most
recent partially-packed server worked well in our implemen-
tation in Section 4.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9

N
um

be
r o

f s
er

ve
rs

Size of servers(millions of pages)

Servers used by GREEDY

Oblivious
GREEDY

Lowerbound

Figure 4: Comparison of server usage

did not consider the 20 laboratory VMs (which represent
synthetic workloads). Since we needed a large number of
traces for the VM packing experiment, we extracted 4 traces
from each of the 31 volunteer machines. The traces were
spaced far enough apart in time so as to not be closely cor-
related. We used the 124 VM traces obtained in this manner
in our VM packing experiments.

We implemented GREEDY with a small twist. In step
3(a) of GREEDY when the First-Fit algorithm is applied
on a set of VMs, we let our implementation of First-Fit uti-
lize all available sharing between the VMs that are packed
into a given server. That is, when First-Fit considers adding
a new VM to a server, it assumes that any page present in
the new VM that is already present in some VM in the server
can be shared. Note that some of the pages shared in this
fashion may not be explicitly captured in the tree model; We
use this GREEDY variant since it better captures how page
sharing works in actual virtualization platforms—while the
sharing in the tree model guides the GREEDY VM pack-
ing, once VMs are co-located, the virtualization platform
(i.e., hypervisor) will exploit all of the shared pages, and
not just the subset identified by the tree model at packing
time. Thus, this change lets our implementation capture the
actual sharing benefit and not just the fraction identified by
the tree model.

4.1 Server usage
The goal of VM packing is to minimize the number of

servers needed to pack a given set of VMs. We compare
the performance of GREEDY to that of a good sharing-
oblivious algorithm. We implemented the Modified First Fit
Decreasing (MFFD) algorithm [17] that is sharing-oblivious
and is one of the best efficiently computable approximation
schemes for bin packing. In addition, we compare GREEDY
with a lower bound on the optimal number of servers re-
quired for packing the VMs. Note that the fractional pack-
ing lower bound derived in Section 3.2.2 applies to algo-
rithms that only use the inter-VM sharing captured in the
tree model. Since our implementation of GREEDY could
use some additional sharing that is not captured in the tree
model, it would be fairer to compare GREEDY with a lower
bound derived for the general sharing model.

4.1.1 A server lower bound for general sharing
We derive two lower bounds and take the maximum of

both bounds. Since these are lower bounds for general shar-
ing, we make no assumptions about how the pages are shared.

The first lower bound is a simple size bound. Let OPT

 0
 5

 10
 15
 20
 25
 30
 35
 40

 1 2 3 4 5 6 7 8 9M
em

or
y

us
ed

 (m
illi

on
s

of
 p

ag
es

)

Size of servers(millions of pages)

Memory usage of GREEDY

Oblivious
GREEDY

Lowerbound
Unique

Figure 5: Comparison of memory usage

be the smallest number of servers required to pack the given
set of VMs, V = {v1, v2, · · · vn}. Let UNIQ(V) be the set
of unique pages contained in all the VMs in V , and let P
be the server capacity. Clearly, d|UNIQ(V)|/P e servers are
needed to pack all the VMs.

Tp derive the second lower bound, we create a new set
of VMs V ′ = {v′1, v′2, · · · v′n} from the original set of VMs
V = {v1, v2, · · · vn} by removing each shared page from all
but one of the VMs that contain it. Note that the optimal
number of servers required to pack V ′ (call it OPT ′) is a
lower bound on OPT . Further, since the VMs in V ′ share
no pages, they can be packed with a good bin packing algo-
rithm such as MFFD. Let MFFD(V ′) denote the number
of servers used by MFFD for the VMs in V ′. From [17], we
know that MFFD(V ′) ≤ 71

60
OPT ′ + 1. Thus,

OPT ≥ OPT ′ ≥
‰

60

71
(MFFD(V ′)− 1)

ı
.

Combining the two bounds, we have

OPT ≥ max


d|UNIQ(V)|/P e ,

‰
60

71
(MFFD(V ′)− 1)

ıff
.

4.1.2 Results
Figure 4 shows the performance of GREEDY in com-

parison with the performance of sharing-oblivious MFFD
(marked “Oblivious” in the figure) and the lower bound de-
rived in Section 4.1.1. As the server memory capacity in-
creases, we see a decrease in the number of servers and a de-
crease in the gap between the performance of GREEDY and
the lower bound. It also shows that GREEDY is within 20%
to 43% of the lower bound and 32% to 50% more efficient
than the sharing-oblivious MFFD scheme. Furthermore, re-
gardless of server size, GREEDY significantly reduces the
number of servers required compared to a sharing oblivious
algorithm such as MFFD. We see that as the server size
increases the relative performance of GREEDY to MFFD
increases from 32% to 50%, since the larger server sizes al-
low more sharing to be exploited by GREEDY.

4.2 Memory usage
We now show that GREEDY exploits inter-VM page shar-

ing to decrease the total memory footprint.

4.2.1 A memory lower bound for general sharing
We derive a lower bound on the total memory footprint

required for packing a set of VMs V = {v1, v2, · · · vn} in the

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9Pe
rc

en
ta

ge
 o

f s
ha

rin
g

ca
pt

ur
ed

Size of Servers(millions of pages)

Sharing potential captured by GREEDY

Figure 6: Realized sharing potential of GREEDY

general sharing model. For any V ′ ⊆ V , let UNIQ(V ′) de-
note the set of unique pages contained in the VMs in set V ′.
For any page p, let Vp = {v ∈ V : VM v contains page p}.
Note that each page p must have at least d|UNIQ(Vp)|/P e
replicas in any VM packing of V , where P is capacity of the
server. Thus, the following expression is a lower bound on
the total memory footprint of any packing of V :X

p∈UNIQ(V)

d|UNIQ(Vp)|/P e .

4.2.2 Results
In Figure 5, we compare the memory usage of GREEDY

with that of any sharing-oblivious algorithm. Note that any
sharing-oblivious algorithm uses a memory footprint that
equals the sum total of the sizes of all the VMs (marked
“Oblivious” in the figure). In addition, we plot the lower
bound for the memory footprint of any VM packing algo-
rithm in the general sharing model that we derived in Sec-
tion 4.2.1 (marked “Lowerbound” in the figure). We also
plot |UNIQ(V)|, the number of unique pages in the set of
VMs, which is a lower bound on the memory footprint of any
algorithm independent of server memory capacity (marked
“Unique” in the figure).

From Figure 5, we see that as the server memory capacity
increases, the gap between the performance of GREEDY
and the lower bound decreases. Further, GREEDY ap-
proaches the unique pages bound (i.e., perfect sharing) as
the server memory capacity increases. Furthermore, we can
see that GREEDY uses substantially less memory than any
sharing-oblivious algorithm, specifically it uses between 25%
to 57% fewer pages.

Another metric for analyzing the performance of GREEDY
is by evaluating its realized sharing potential. Sharing po-
tential is defined as the maximum achievable reduction in
the memory footprint for a given server memory capacity
P . Note that sharing potential is a non-decreasing function
of P . As P tends to infinity, sharing potential tends to the
difference between the total number of pages and the total
unique pages in the set of VMs. Sharing potential is hard
to compute exactly, since the computing the optimal reduc-
tion is itself NP-Hard. However, we can upper bound the
sharing potential by using the lower bound on the memory
footprint in Section 4.2.1. The realized sharing potential of a
VM packing algorithm is percentage of the sharing potential
that is actually achieved by the algorithm. A lower bound
on the realized sharing potential of a VM packing algorithm
can be computed using an upper bound for the sharing po-

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1

O
ve

rfl
ow

s
pe

r d
ay

Utilization

Server utilization vs number of overflows

Figure 7: Memory overflows seen at different mem-
ory utilization levels.

tential. Using this process, we compute a lower bound on
the realized sharing potential of GREEDY in Figure 6. We
see that as the server memory capacity increases, GREEDY
is able to realize an increasing percentage of the sharing po-
tential, since it can pack more VMs on each server for larger
server memory capacities, allowing for a larger amount of
sharing to be captured. For around 4M memory pages, more
than 70% of the sharing potential is realized by GREEDY.

4.3 Memory overflow
As sharing patterns and memory requirements of VMs

change over time, the number of pages required on a server
can become greater than its capacity, causing memory to
become over-committed, a phenomenon that we term as
“memory overflow”. Memory overflow can cause excessive
page faulting degrading the performance of the VMs. This
might in turn trigger the potentially expensive operation of
reallocating all the VMs in accordance with their current re-
quirements and sharing characteristics. With this in mind,
we study how stable the packings produced by GREEDY are
over time. Our primary finding is that if we let GREEDY
underutilize each server by a small percentage, server over-
flows become significantly rarer. The reason is that the extra
unallocated memory capacity absorbs some of the variations
caused by changing memory sharing characteristics.

We study the tradeoff between server memory utilization
and overflow. For a given utilization u, 0 ≤ u ≤ 1, algorithm
GREEDY allocates VMs such that the memory capacity of
each server is at most u times the actual server memory
capacity. Using 3 physical servers with a capacity of 4194304
pages and the traces from the 31 volunteer machines, we
found that almost all server overflows can be avoided by
utilizing the servers to only 90% of capacity. Figure 7 shows
us that for 90% utilization, we see only 3 faults over the
course of a 2 week time frame. This gives an expected 4.67
days until a repacking of VMs due to overflow is required.
On the other hand, fully utilizing the physical servers to
100% of its memory capacity results in 33 faults and an
expected 0.42 days until reallocation is required.

5. RELATED WORK
Systems work. Content-based page sharing for virtual

machines was implemented in the Disco system [1], incor-
porated in VMware ESX [14] and later in Xen [9]. In these
systems, the hypervisor uses hashing and page comparison
to identify and share identical pages running on the same

physical server. There has been recent systems work in ex-
ploiting sharing at the sub-page level by sharing portions of
a page such as the Difference Engine system [5]. While we
explicitly consider only page-level sharing in our work, our
models and results can be extended to account for sub-page
level sharing as well.

While much of the work content-based page sharing fo-
cus on effectively sharing the memory contents of VMs lo-
cated on the same physical server, the potential for exploit-
ing inter-VM sharing by intelligently colocating VMs was
first studied in [16]. In [16], the authors provide a compact
fingerprinting scheme using bloom filters that can identify
VMs with a large sharing potential, and show that “sharing
aware” placement has the potential to significantly improve
memory usage. Our work takes the next step by develop-
ing formal models and provably-good algorithms for sharing-
aware placement of VMs on physical servers with the goal
of achieving the potential benefits of inter-VM sharing.

In our work, we have focused on optimizing memory re-
sources, whereas the general VM colocation also incorpo-
rates other server resources such CPU, disk, and network.
For instance, the VMware Distributed Resource Scheduler
[13] monitors CPU, network, and memory utilization in clus-
ters of virtual machines and use migration for load balanc-
ing. We view our work as integrating into the larger multi-
resource VM colocation framework by helping incorporate
sharing-aware VM placement into these systems.
Algorithmic work. There has been no prior algorithmic
work in the VM maximization problem per se, though we
utilize algorithmic techniques similar to that used in the
closely-related knapsack problem [11]. Note that the spe-
cial case of VM maximization where VMs have no shared
pages is the knapsack problem. Numerous variants of the
knapsack problem have been studied over the years, par-
ticularly relevant is the partially-ordered knapsack problem
where the items that are packed must obey precedence con-
straints expressed as a partial order [7, 10]. In fact, our
FPTAS for the single-server VM maximization problem for
cluster-tree sharing uses the “left-right” dynamic program-
ming technique that was developed for the tree knapsack
problem in [7].

A generalization of the knapsack problem where a sub-
modular function describes the cumulative size of any col-
lection of items was recently studied by Fleischer and Svitk-

ina[12]. They present a bi-criteria randomized
“q

n
logn

, 1
2

”
-

approximation algorithm, where a (ρ, σ)-approximation is
defined as a solution where the knapsack is allowed to over-
flow by a factor of ρ and the profit function is guaranteed
to be within a factor of σ of optimal. Furthermore, they
proved a lower bound on all approximation schemes for this

problem of ρ
σ

= Ω
“q

n
logn

”
. While page sharing in VMs is

submodular, it is much more approximable than the arbi-
trary submodular functions considered in [12].

A special case of VM packing where the VMs do not share
any pages is the classical bin packing problem [2]. While
dozens of variants of bin packing have been studied in the
literature over the past decade, there is no prior algorithmic
work to our knowledge that considers the interesting case
where the cumulative size of the packed items can be smaller
than the sum of the individual sizes due to sharing.

6. CONCLUSIONS AND OPEN PROBLEMS
In this paper, we initiated the study of sharing models

and sharing-aware algorithms for VM colocation. Our work
exposes the tradeoff between complex sharing models that
capture all of the inter-VM sharing but are hard to exploit
algorithmically, and structured hierarchical models that ig-
nore some of the inter-VM sharing but are more amenable to
provably-efficient algorithm design. Using actual VM traces,
we demonstrated that hierarchical sharing models can cap-
ture a large percentage of the inter-VM sharing, making
them a viable option for real-world VM colocation. Our
experiments show that our VM packing algorithm exploits
inter-VM sharing to substantially reduce number of servers
and memory footprint and that these packings can be rela-
tively stable over time.

Our work opens a number of exciting directions for fu-
ture research. A key direction is tightening the approxima-
tion bounds, both better algorithms and lower bounds, for
the VM packing problem (see Figure 1). For instance, is
there an asymptotic PTAS for VM packing in the hierar-
chical sharing models, or even better approximation ratios?
Bin packing, a special case of VM packing, has an asymp-
totic PTAS [3, 8], though variants are known not to have
an asymptotic PTAS’es [15]. While our algorithms work in
“batch mode”, an important research direction is extending
our work to an online setting where VM packing occurs as
and when VMs are created and destroyed. Further, our work
focused primarily on the server memory resource. Extend-
ing our work to multi-resource VM colocation that takes into
account memory, CPU, and network resources is another im-
portant direction for future work. Finally, studying how our
techniques can be applied to cloud computing platforms of
the future is an interesting avenue for research. As modern
data centers and cloud platforms evolve, so will the struc-
tural properties of VM sharing. Investigating these plat-
forms may lead to new models and algorithms for reducing
the operational cost of the virtualization service providers.

7. ACKNOWLEDGMENTS
We thank our shepherd Anne Benoit and the anonymous

reviewers for their comments. We thank Sean Barker for his
help with gathering synthetic laboratory traces and the nu-
merous volunteers in our department for contributing mem-
ory traces for this study. The work of Michael Sindelar
and Ramesh Sitaraman was supported in part by an NSF
Award CNS-05-19894. Much of the work of Michael Sinde-
lar was done while he was at UMass, Amherst. The work
of Prashant Shenoy was supported in part by NSF grants
OCI-1032765, CNS-0916972 and CNS-0720616.

8. REFERENCES
[1] E. Bugnion, S. Devine, and M. Rosenblum. DISCO:

Running Commodity Operating Systems on Scalable
Multiprocessors. In SOSP, pages 143–156, 1997.

[2] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson.
Approximation algorithms for bin packing: A survey.
In Approximation Algorithms for NP-hard Problems,
pages 46–93, Boston, MA, USA, 1997. PWS
Publishing Co.

[3] W. Fernandez de la Vega and G. Lueker. Bin packing
can be solved within 1+ ε in linear time.
Combinatorica, 1(4):349–355, 1981.

[4] L. Fleischer, M. X. Goemans, V. S. Mirrokni, and
M. Sviridenko. Tight approximation algorithms for
maximum general assignment problems. In
Proceedings of the Seventeenth annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages
611–620, New York, NY, USA, 2006. ACM.

[5] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C.
Snoeren, G. Varghese, G. M. Voelker, and A. Vahdat.
Difference engine: Harnessing memory redundancy in
virtual machines. In Usenix OSDI, December 2008.

[6] M. Hajiaghayi, K. Jain, K. Konwar, L. Lau,
I. Mandoiu, A. Russell, A. Shvartsman, and
V. Vazirani. The minimum k-colored subgraph
problem in haplotyping and DNA primer selection. In
Proceedings of the International Workshop on
Bioinformatics Research and Applications (IWBRA),
2006.

[7] D. Johnson and K. Niemi. On knapsacks, partitions,
and a new dynamic programming technique for trees.
Mathematics of Operations Research, 8(1):1–14, 1983.

[8] N. Karmarkar and R. Karp. An efficient
approximation scheme for the one-dimensional
bin-packing problem. In 23rd Annual Symposium on
Foundations of Computer Science, pages 312–320.
IEEE, 1982.

[9] J. Kloster, J. Kristensen, and A. Mejlholm. On the
Feasibility of Memory Sharing: Content-Based Page
Sharing in the Xen Virtual Machine Monitor. Master’s
thesis, Department of Computer Science, Aalborg
University, June 2006.

[10] S. Kolliopoulos and G. Steiner. Partially ordered
knapsack and applications to scheduling. Discrete
Applied Mathematics, 155(8):889–897, 2007.

[11] S. Martello and P. Toth. Knapsack problems:
algorithms and computer implementations. Wiley &
Sons, 1990.

[12] Z. Svitkina and L. Fleischer. Submodular
approximation: Sampling-based algorithms and lower
bounds. In FOCS, pages 697–706. IEEE Computer
Society, 2008.

[13] VMware. DRS performance and best practices. 2008.

[14] C. Waldspurger. Memory Resource Management in
VMWare ESX Server. In Proceedings of the Fifth
Symposium on Operating System Design and
Implementation (OSDI’02), Dec. 2002.

[15] G. Woeginger. There is no asymptotic PTAS for
two-dimensional vector packing. Information
Processing Letters, 64(6):293–297, 1997.

[16] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers,
E. Cecchet, and M. Corner. Memory buddies:
Exploiting page sharing for smart colocation in
virtualized data centers. In 2009 ACM
SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE 2009),
Washington, DC, USA, March 2009.

[17] M. Yue and L. Zhang. A simple proof of the inequality
MFFD(L) ≤ 71/60 OPT(L) + 1,L for MFFD
bin-packing algorithm. Acta Mathematicae Applicatae
Sinica (English Series), 11:318–330, July 1995.

