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A Machine Learning Challenge in the Science of Science

* Capture the evolution of scientific concepts.

* Predict emerging research topics.

4+ Competitions to predict the research
data science research frontier'

1 Krenn, Mario, et al. "Predicting the Future of Al with Al: High-quality link prediction in an exponentially growing knowledge network." arXiv, 2022
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r/MachineLearning

4 Posted by u/beezlebub33 5 months ago JAS

272 [D] Giving Up on Staying Up to Date and Splitting the Field

G Discussion

Does anyone else feel completely unable to keep up with machine learning and Al in general? I have my sub-sub-field and
I do my work in (applied, mostly) and I read those papers, but I at least try to keep somewhat up to date on the entire
topic of machine learning.

I mean, at this point I understand Transformers and related, and I kind of understand Latent Diffusion Models and Graph
Neural Networks but not enough to use them, but I've lost the bubble on what's happening in deep reinforcement
learning. I'm sure AlphaTensor is great, but I just don't have the time and energy.

I'm dreading NeurIPS and trying to figure out what people are talking about. I am wondering if ML needs to do what
physics did a while ago, and just give up on trying to understand all of it.

I have a relative who does physics of solar cells (something about hot carriers and hyperfine states???) who doesn't
understand what the relativity people he went to undergraduate with are talking about. They go to different conferences
Now.

D 47 Comments /> Share [:| save & Hide D Report 98% Upvoted
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PNAS
Slowed canonical progress in large fields of science

Johan S. G. Chu®'® and James A. Evans®<¢

aKellogg School of Management, Northwestern University, Evanston, IL, 60208; PDepartment of Sociology, University of Chicago, Chicago, IL, 60637;
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4+ Peer reviewers struggle to recognize and understand novel ideas

Chu, Johan SG, and James A. Evans. "Slowed canonical progress in large fields of science.” PNAS, 2021
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—Xploring data scientists reviewing the literature

4 Data scientists’

4+ Individuals trained in computer science, statistics, and application specific
disciplines e.g. economics or biology

4+ Engaged in data work, applied engineering, and research

4 Literature reviews?

4+ A learning process spanning information seeking, sensemaking, and
composition

4+ Obtaining research literature, forming a synthesized understanding of the
gathered data, and presentation of this information

1 Crisan et. al. "Passing the data baton: A retrospective analysis on data science work and workers." IEEE Transactions on Visualization and
Computer Graphics, 2020

2Zhang, Xiaolong, et al. "CiteSense: supporting sensemaking of research literature." CHI, 2008
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4+ Examining the activities around search; skimming,
reading, and synthesis
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4+ Our partcipants

4+ Methods for the study & analysis
4+ Results
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Study Participants

4+ 20 participants; self-id as data scientists

4+ Recruited from university lists + social media

4+ Workplace: 13 university, 7 industry & non-profit

== 4+ Average published papers: 4

B 4+ Noted pronouns: 11 he/him, 9 she/hers, 2 they/them
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Study & Analysis Methods

e

+ Semi-structured interviews 4 Think-aloud observation 4+ Axial coding; 3 authors

+ Encouraged to discuss all 4 Participant explores literature 4 Agreement &¢: 0.92
Interactions with literature

4+ Thematic analysis

p————— 1hourx20 e———od p—— 3 months e—

4+ After a pilot; 15 participants
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4+ Semi-structured interviews 4 Think-aloud observation

4 Encouraged to discuss all
interactions with literature

4+ After a pilot; 15 participants

Study & Analysis Methods
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4+ Participant explores literature

“Recall a literature review you conducted in
the past. Imagine you were re-starting this
process and show us how you went through
the literature review.”

OR

“Imagine you are interested in finding and
documenting the latest work on a topic of
your interest, show us how you go about this
process.”

OR

“Imagine you are planning future work on a
problem you are interested in, conduct the
literature review to help plan your future
work”
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Remainder of the talk

4+ Study goals and motivations

4+ Our partcipants

4+ Methods for the study & analysis
4+ Results

4+ Implications
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Why do data scientists access the scientific
iterature”?

4+ Desire to understand disciplinary norms Hilnen i s g ok ha o prolslem .. i
not sufficiently familiar with to know what

, , L the typical approaches are, how is this

+ Passively following a discipline evaluated, what kinds of approaches are
falling out of favor versus becoming more

4+ Brainstorming solutions accepted by the community”” - P15

“Where the community is going, or what

/_N people that I have previously followed the

works of are up to right now” - P10

Seeking Developing
problems solutions
“After you figure out [the problem], it’s like I
have an idea for what you could do better,
and then it’s seeing if others have done
Establishing something similar before” - P5
novelty

13
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How do data scientists access the scientific
iterature?

4+ Data scientists seeking the literature with “Thad an idea in my head, but

search
4+ The literature finding data scientists with
automated + personal recommendations and

4+ Trapped in a discplinary bubble eventually I kind of started to find things that
actually matched.” - P15

... Ultimately it just took

“I'm probably heavily

... if 'm working on hate speech, most
of my recommendations will be very
computer science based but maybe there’s
relevant stuff in social science that I'm
probably never going to come across.” - P11.
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“If the field is very crowded - sometimes I
find RL, and the problems I am focusing on
to be crowded, then it becomes frustrating
and

.- P19

“In grad school a these
things and says hey,

. When that information is
there for you, it tells you what to expect
otherwise youre spending a lot of time and
don’t understand

- P7.
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How do data scientists select papers”?

4+ Understanding salient differences
between similar items

4 Users understand similar item
variants in terms of their differences 1
or aligned to time e.g. code snippets

“If the field is very crowded - sometimes I
find RL, and the problems I am focusing on
to be crowded, then it becomes frustrating
and

" - P19

“In grad school a these
things and says hey;,

. When that information is
there for you, it tells you what to expect
otherwise youre spending a lot of time and
don’t understand

- P7.

1 . . .
Srinivasa Ragavan, Sruti, et al. "Foraging among an overabundance of similar variants." CHI, 2016 16
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How do data scientists select papers”?

“One thing is that its hard to figure the

4+ Understanding the salient differences
credibility of a paper, so it’s sort of trying to

between similar items
+ Establishing the credibility of papers with forums like Twitter, Reddit or Openreview.

the knowledge context Even if this is highly reviewed what do other
people who have worked in similar domains

think about it” - P14

figure it out based on discussions by online

17
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“One thing is that its hard to figure the
credibility of a paper, so it’s sort of trying to

Even if this is highly reviewed what do other
people who have worked in similar domains
think about it” - P14

People do a lot of , sometimes a
lot of ideas are not very new but the
motivation section is like poetry and when
you read the details you feel [its] not what
they are claiming they do. ... [or]

and not
meeting the expectation in their
experiments. So identifying those trends
from papers is very important.” - P19
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What challenges do data scientists face
N reading papers”?

4+ Understanding the hidden details of
papers through code

4+ Understanding the math on display in

papers with blogs, code, and talks

4+ Problem with disciplinary norms

[I ask authors if] there is any publicly
available code for what you're doing. Because
many of these papers look well on paper but
then its . Or
its

.- P16

In writing for niche audiences it requires
having to show that [an idea] is important or
useful and often that means that they will
add equations or theorems [for an idea] that
really is not as complicated ...

.- P5

18



How do data scientists lean on social ties?

4+ Seeking recommendations, collaboratively brainstorming, and
making sense of papers with

4+ Peers in person
4+ Peers in online forums

4+ Leveraging engagement with authors
4 In direct communicaton

4+ Passively through talks and forum posts

19
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4+ Support cross-disciplinary access
4+ Faclitate reliance on close peers

4+ Leverage the knowledge context of papers

» Example prior work — possible future work

@ = B
> . . .

» Likely to span work in several related fields
(IR, HCI, NLP, CSCW ...)
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Support cross-disciplinary access

4+ Data science is a rapidly evolving and interdisciplinary field

4+ Data scientists operate in their own knowledge silos

4+ Some ways forward:
4+ \erbose, interactive, conversational searches for cross domain exploration

= 4 SKimming aids such as adaptive document layouts, document level FAQs,
= and QA - perhaps with personalization to readers

. 4+ Reading aids like paraphrasing documents toward different disciplinary
: audiences

=" 4 But, people learn when a task is perceived as challenging'?

1Vakkari, Pertti, and Saila Huuskonen. "Search effort degrades search output but improves task outcome.”, JASIST, 2012

2Liu, Ying-Hsang, et al. "Search Interfaces for Biomedical Searching: How do Gaze, User Perception, Search Behaviour and Search Performance
Relate?." CHIIR, 2022 22
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Implications

Faclitate reliance on close peers

4+ With peers, data scientists did:

4+ Received recommendations, brainstormed, established credibility, read papers

4+ Some ways forward:

1,2

; | . \ . \ \ 3
11 2 4 Collaborative conversational agents aiding brainstorming

1 Piao, Jinghua, et al. "Bringing Friends into the Loop of Recommender Systems: An Exploratory Study.”, CSCW, 2021
2Aizenbud—Reshef, Netta, Ido Guy, and Michal Jacovi. "Collaborative feed reading in a community." ACM GROUP, 2009
Avula, Sandeep, et al. "Searchbots: User engagement with chatbots during collaborative search." CHIIR, 2018
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4+ Some ways forward:
+ Knowledge context in SERPs

— | 4 The knowledge context as a reading and skimming aid°

1Smith, Catherine L., and Soo Young Rieh. "Knowledge-context in search systems: Toward information-literate actions.”, CHIIR, 2019
2Rachatasumrit, Napol, et al. "CiteRead: Integrating Localized Citation Contexts into Scientific Paper Reading." |UI, 2022
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4+ With forum discussions, recorded talks, videos, blogs, code repositories data
scientists did:

4+ Discovery, establish credibility, aided reading.

4+ Some ways forward:
+ Knowledge context in SERPs

— | % The knowledge context as a reading and skimming aid *

=" 4 Provider faimess and the knowledge context

1Smith, Catherine L., and Soo Young Rieh. "Knowledge-context in search systems: Toward information-literate actions.”, CHIIR, 2019

2Rachatasumrit, Napol, et al. "CiteRead: Integrating Localized Citation Contexts into Scientific Paper Reading." |UI, 2022

3 24

McDonald, Graham, Craig Macdonald, and ladh Ounis. "Search results diversification for effective fair ranking in academic search." IRJ, 2022
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