
Evaluation of Prototypes
Discount Methods

1

Prof. Narges Mahyar
UMass Amherst
nmahyar@cs.umass.edu
Courses, projects, papers, and more:
http://groups.cs.umass.edu/nmahyar/

© Mahyar with acknowledgements to Joanna McGrenere and Leila Aflatoony

Introduction to HCI

http://groups.cs.umass.edu/nmahyar/

Today

• Reading discussion [5 min]
• Cognitive walkthrough [20 min]
• Heuristic evaluation [15 min]
• In class activity [15 min]
• Project discussion [15 min]

2

Learning goals

• Explain why cognitive walkthrough and heuristic evaluation
are considered discount usability methods

• Outline the general procedure for conducting a heuristic
evaluations and a cognitive walkthrough

• know how to apply heuristics
• Describe the pros/cons of cognitive walkthroughs and

heuristic evaluation

3

Discount usability engineering

•Cheap (thus ‘discount’)
• No special labs or equipment needed
• Doesn’t need to involve users directly
• The more careful you are, the better it gets

•Fast
• On order of 1 day to apply
• Standard usability testing may take a week

•Easy to use
• Can be taught in 2-4 hours

4

Types of discount methods

•Cognitive walkthrough: “mental model”
• Assesses “exploratory learning stage”
• What mental model does the system image facilitate?
• Done by non-experts and/or domain experts

•Heuristic evaluation: “fine tune”
• Fine-tunes the interface (hi-fi prototypes; deployed

systems)
• HCI professionals apply a list of heuristics while simulating task

execution
• Targets broader use range (including expert)

5

Cognitive walkthrough

6

What is a cognitive walkthrough?

•Cognitive walkthroughs are used to evaluate a
product’s usability.

• Test conceptual model/interface support for mental
models though task examples: task + design =
scenario

•Use a “walkthrough” to evaluate a scenario

7

CW simulates mental model development
• Assessing…
• is the conceptual model an effective one?
• does the interface design communicate the conceptual model?
• how well does it support forming a good mental model?

8

system
image

system

mental
model

user

conceptual
model

designer

i.e. your prototype

Cognitive walkthrough
exploratory learning

what for: developing / debugging an interface, without
accessing users (which is expensive)
tests: how well

1) interface design
2) underlying conceptual model aligns with/sets up the user’s mental model

not for: assessing performance at highly skilled,
frequently performed tasks; or finding radically new
approaches

9

How to conduct a walkthrough evaluation?
• Start: with a scenario

task examples + design è scenario

• 1) break task down into user actions (expected
system response)

• 2) perform each step ON the existing interface and
ask:

Q1: will the user know what to do?
Q2: will the user see how to do the action?
Q3: will the user correctly understand the system response?

3) if you locate a problem, mark it & pretend it
has been repaired; then go on to next step.

10

cognitive walkthrough
•Possible outputs:
• Loci & sources of confusion, errors, dead ends
• Estimates of success rates, error recovery;

performance speed less evident
• Helps to figure out what activity sequences could or should be

•What’s required:
• Task examples: design-independent descriptions of tasks that

representative users will want to perform.

• A prototype to provide a design.

•Who does it: [theoretically] anyone – usually design team members
or expert outside analysts.
• Can use real users . . . but this makes it a lot less ‘discount’

11

Cognitive walkthrough:
basic steps

• Step I. Generate “correct”, intended steps to complete
a task.

• Select a task to be performed and write down all the
‘user actions’, and expected “system responses”.

• (a) can they find correct sequence(s) in current version?
use high-level directives: correct user action = ‘’enter amount of
food for pet feeder to dispense”
• (b) are there mental-model problems even if they use exactly the

right sequence?
get very specific: correct user action = “type ‘36g’ into the text
entry box in the middle of the screen

12

Cognitive walkthrough:
basic steps
• Step II. Carry out steps, simulating the mindset of your intended

user, and note your success OR failure on a log sheet.
•for each step:
• Q1: ask yourself if user knows what to do?

- are they trying to produce this effect? do they have enough info? etc.

• Q2: explore – will the user see how to do the step?
- look for the needed action? is it visible? it is obvious how to perform the
step?

• Q3: interpret – will the user correctly understand the system
response?
- Is the feedback understandable? Will the interpretation be correct?

•Note: even with an error, user may have progressed if error became apparent.
Distinguish this from when user is left with a misunderstanding.

13

Cognitive walkthrough:
two approaches to instructing person(s) doing CW
• Approach (a): participant follows the pre-prepared steps and assess

according to expected actions/system response
• at each step, assess using the questions usually best you can do

with a paper/low-fidelity prototype (unless it is very complete, has
many paths)
• approach you will probably want to use in project

• Approach (b): give the CW participant ONLY the higher level
directive(s).
• E.g., “create an event note with the following attributes. . . ”
• more exploratory; still use Q1-3 to assess for each step they take
• BUT - the steps he/she takes might diverge from the list you made

– note them down on another action-list sheet. These points should
trigger further analysis
• usually most effective higher fidelity prototypes or released

systems 14

Cognitive walkthrough:
what kinds of problems should I record?

• In a CW you may note may kinds of problems, for example:
• Problems with particular steps
• Problems moving between steps
• Larger problems that involve lots of steps
• Larger problems that hint at deeper problems with conceptual

model/design
• Small problems that might only apply to unusual users
• Other kinds of problems that just become apparent while using

interface, etc.

• Make note of these as appropriate
• If you do a lot of cws, you may develop your own template for

noting problems that works for you

15

Cognitive walkthrough:
how do I become good at doing CWs?

1. when you’re new to CWs, it’s easy to assume to
the user will know what to do if YOU know what to do
• force yourself to imagine what the user might not know

2. when asking the questions at each step:
• really think about what the user could be thinking. . .
• consider the impact of misconceptions or mistakes that

they could have made earlier!
3. perform lots of them!
• you’ll get better at figuring out what to focus on with

practice

16

Cognitive walkthrough:
what do I do after the CW?

•CWs can be done in teams or individually
• aggregate and discuss problems
• possibly found over more than one CW

• prioritize problems based on severity, likelihood
THEN:
• iterate and fix as required
• decide on which you can/will address
• iterate on conceptual model and/or interface design

• OR write up a report/recommendations à design team
• if you’re not the one(s) doing the designing

17

heuristic evaluation

18

heuristic evaluation

• What for:
• Identifying (listing & describing) problems with existing

prototypes (any kind of interface); for any kind of user, new or
proficient

•Research result:
• 4-5 evaluators usually able to identify 75% of usability problems
• User testing and usability inspection have a large degree of non-

overlap in the usability problems they find (i.e., It pays to do
both)

•Cost-benefit:
• Usability engineering activities often expensive / slow; but some

can be quick / cheap, and still produce useful results
• Inspection turns less on what is “correct” than on what can be

done within development constraints
• Ultimate trade-off may be between doing no usability

assessment and doing some kind
19

Scott Klemmer

20

https://www.coursera.org/lecture/human-computer-interaction/heuristics-
understanding-flwJl

1. Design team supplies scenarios, prototype, list of
heuristics;
need 3-5 evaluators: train in method if non-expert
• Single evaluator catches ~35% of the usability problems
• Five evaluators catch ~75%

2. Each evaluator independently produces list of justified,
rated problems by stepping through interface and applying
heuristics at each point
… use heuristics list & severity rating convention

3. Team meets and compiles report that organizes and
categorizes problems

21

Howto preform a heuristic evaluation

Individuals vs. teams

• Nielsen recommends individual evaluators inspect the
interface alone.

Why?
• evaluation is not influenced by others
• independent and unbiased
• greater variability in the kinds of errors found
• no overhead required to organize group meetings

22

Why multiple evaluators?

• Every evaluator doesn’t find every problem
• Proficient evaluators find both easy & hard (subtle) ones

23

One popular list of heuristics (Nielson, ‘93)

H1: visibility of system status
H2: match between system & the real world
H3: user control & freedom
H4: consistency and standards
H5: recognition rather than recall
H6: error prevention
H7: flexibility and efficiency of use
H8: aesthetic and minimalist design
H9: help users recognize, diagnose & recover
H10: help and documentation

24

25

Step 1: briefing session

•Get your experts together
• Brief them on what to do, goals of system, etc.
• Discuss heuristics to be applied

•May also want to provide experts with:
• Some examples of tasks
• Descriptions of user personas
• Simple instructions/guidance
• Especially if NOT a fully functioning system

26

Step 2: individual evaluation

•At least two passes for each evaluator
• First to get feel for flow and scope of system
• Second to focus on specific elements

•Each evaluator produces list of problems
• Explain problem w/reference to heuristic or other info
• Be specific and list each problem separately
• Assign rating of severity to each violation

27

Evaluation form

28

 1

Example Heuristic Evaluation Form

Evaluator: Prototype: Date/Time: Pg: ___ / ___

Heuristic
violated

Description / Comment Severity

Severity ratings
•Each violation is assigned a severity rating
• Many other methods of doing this
•Usually some combination of:
• Frequency
• Impact
• Persistence (one time or repeating)

•Used to:
• Help prioritize problems
• Allocate resources to fix problems
• Estimate need for more usability efforts

•Can be done independently by all evaluators or later as group
prioritizes

29

Example severity & extent scales

one severity scale:
0 - don’t agree that this is a usability problem
1 - cosmetic problem
2 - minor usability problem
3 - major usability problem; important to fix
4 - usability catastrophe; imperative to fix

one extent scale:
1 = single case
2 = several places
3 = widespread

30

Step 3: aggregating results
& making recommendations

• Evaluation team meets and compares results
• Through discussion and consensus, each violation is

documented and categorized in terms of severity,
extent
• Violations are ordered in terms of severity
• E.g., Use an excel spreadsheet (which can be

sorted)
• Combined report goes back to design team.

31

heuristic evaluation
Advantages

•Contributes valuable insights from objective
observers
• The “minimalist” approach
•General guidelines can correct for majority of

usability problems
• Easily remembered, easily applied with modest

effort
• Systematic technique that is reproducible with

care.
• Discount usability engineering
•Cheap and fast way to inspect a system
•Can be done by usability experts and rapidly-

trained end users
32

Heuristic evaluation
Problems:

• Principles must be applied intuitively and carefully
•Can’t be treated as a simple checklist

• Heuristics can narrow focus on some problems at cost of
others
• Can reinforce existing design (not for coming up with radical

ideas)
• Doesn’t necessarily predict users/customers’ overall

satisfaction
• May not have same “credibility” as user test data

33

Combining HE and CW

èHCI practitioners often use a combination of both
that might vary based on what they’re trying to learn

• E.G., While doing a walkthrough for a task, apply
the heuristics at each step in addition to the CW
questions.

34

Activity:
generating steps for CW
•Communitypulse (https://communitypulse.cs.umass.edu)

• A visual analytic system that utilizes text analysis to
extract important topics, emotions and sentiments from
community comments and enables civic leaders to
explore the comments at multiple levels of granularity.

35

https://communitypulse.cs.umass.edu/

Work out STEPS for task example
(with ‘correct’ actions for given interface)

1. Ron decides to use communitypulse
2. Sorts based on excited comments
3. Sorts based on angry comments
4. Sorts based on negative comments
5. Selects the proposal with the most angry comments
6. Goes back to the overview page
7. Selects two top proposals with the largest number of

comments

36

Activity part 1:
work out STEPS for cw
•Work with your group
•1) follow steps from the task scenario + storyboard
• Use storyboard to help you understand order of

steps/mapping to screens
• You might not always have enough info to determine

what the correct user action should be, that’s OK
è Can guess based on your knowledge of how similar systems work

OR skip it

2) we will generate a set (with correct actions) – whole
class

37

Activity part 2:
perform the cognitive walkthough

for each of the steps:
• Ask yourselves each of Q1-Q3;
• If answer is NO for any questions:

• Write down the problem (possible solutions if you have ideas)
• THEN assume it’s fixed; go on to next step

38

On deck…

• Next class (Thursday) …
• Readings

39

Extra slides
heuristics

40

H1: visibility of system status

• The system should always keep users informed about what
is going on, through (appropriate feedback within
reasonable time)

• example: consider system response time (user must wait)
• 0.1 sec: no special indicators needed, why?
• 1.0 sec: user starts to lose track of data, objects, etc
• 10 sec: max duration if user to stay focused on action
• for longer delays, use percent-done progress bars

41

searching database for matches

H1: visibility of system status

• keep users informed about what is going on
• appropriate visible feedback

42

What did I
select?

What mode am
I in now?

How is the
system

interpreting
my actions?

H2: match between system & real world

• The system should speak the users' language, with
words, phrases and concepts familiar to the user,
rather than system-oriented terms. Follow real-world
conventions, making information appear in a natural
and logical order.
• e.g. withdrawing money from a bank machine

43

H2: match between system & real world

44

H3: user control & freedom

45

Users often choose system functions by mistake and will need a clearly marked
"emergency exit" to leave the unwanted state without having to go through an
extended dialogue. Support undo and redo.

How do
I get
out of
this?

H3: user control & freedom

46

• �Exits� for mistaken choices, undo, redo
• Don�t force down fixed paths

Strategies:
• Cancel button (for dialogs waiting for user input)
• Universal undo (can get back to previous state)
• Interrupt (especially for lengthy operations)
• Quit (for leaving the program at any time)
• Defaults (for restoring a property sheet)

H4: consistency & standards

• consistency of effects à predictability
• same words, commands, actions should always have the same

effect in equivalent situations

• consistency of language and graphics
• same info/controls in same location on all screens/dialog boxes -

Not:

• same visual appearance across the system (e.g. widgets)
• e.g. not different scroll bars in a single window system

• consistency of input
• require consistent syntax across complete system

47

H4: consistency & standards

48

consistency of language and graphics
• same info/controls in same location on all screens/dialog boxes

H5: error prevention

• try to make errors impossible
• Even better than good error messages is a careful design which prevents a

problem from occurring in the first place. Either eliminate error-prone
conditions or check for them and present users with a confirmation option
before they commit to the action.

• modern widgets: only �legal commands� selected, or
�legal data� entered

49

H5: errors we make
•Mistakes
• Arise from conscious deliberations that lead

to an error instead of the correct solution
• Slips
•Unconscious behavior that gets misdirected

en route to satisfying goal
• E.G. Drive to store, end up in the office

• Shows up frequently in skilled behavior
• Usually due to inattention

•Often arises from similarities of actions

50

H5: types of slips
• Capture error
• Frequent response overrides [unusual] intended one
• Occurs when both actions have same initial sequence

• Confirm saving of a file when you don�t want to delete old version

•

51

I can�t believe I
pressed Yes...

H5: types of slips
• Description error
• Intended action has too much in common with others possible

E.G. When right and wrong objects physically near each other
• Pour juice into bowl instead of glass
• Go jogging, come home, throw sweaty shirt in toilet instead of laundry
• Move file to trash instead of to folder

• Loss of activation
• Forgetting the goal while carrying out the action sequence

e.G. Start going to a room and forget why by the time you get
there
• Navigating menus/dialogs, can�t remember what you are looking for
• But continue action to remember (or go back to beginning)!

• Mode errors
• People do actions in one mode thinking they are in another

• Refer to file that�s in a different directory
• Look for commands / menu options that are not relevant

52

H6: recognition rather than
recall

53

• computers good at remembering things, people aren�t!
• Minimize the user's memory load by making objects, actions, and options visible. The user should

not have to remember information from one part of the dialogue to another. Instructions for use of
the system should be visible or easily retrievable whenever appropriate.

H7: flexibility and efficiency of
use
• Experienced users should be able to perform frequently used

operations quickly
• Strategies:
• Keyboard and mouse accelerators

• Abbreviations
• Command completion
• Menu shortcuts & function keys
• Double clicking vs. Menu selection

• Type-ahead (entering input before the system is ready for it)
• Navigation jumps

• Go to desired location directly, avoiding intermediate nodes

• History systems
• WWW: ~60% of pages are revisits

54

H8: aesthetic and minimalist design

55

• Dialogues should not contain information which is irrelevant or rarely needed.
Every extra unit of information in a dialogue competes with the relevant units of
information and diminishes their relative visibility.

H9: help users recognize, diagnose, and
recover from errors

56

• Error messages should be expressed in plain language (no codes), precisely
• indicate the problem, and constructively suggest a solution.

H10: help and documentation
• Help is not a replacement for bad design!
• Simple systems: walk up and use; minimal instructions
• Most other systems:
• Feature-rich
• Some users want to become �expert� rather than �casual� users
• Intermediate users need reminding, plus a learning path

• Many users do not read manuals
• Usually used when users are panicked & need help NOW
• Need online documentation, good search/lookup tools
• Online help can be specific to current context

• Sometimes used for quick reference
• Syntax of actions, possibilities...
• List of shortcuts …

57

H10: types of help
• Tutorial and/or getting started manuals
• Short guides that people usually read when first encounter system

• Encourage exploration and getting to know the system
• Communicate conceptual material and essential syntax

• On-line �tours�, exercises, and demos
• Demonstrate very basic principles through working examples

• Reference manuals
• Used mostly for detailed lookup by experts

• Rarely introduces concepts
• Thematically arranged

• On-line hypertext
• Search / find
• Table of contents
• Index
• Cross-index

58

H10: types of help (cont�d)

• Reminders
• Short reference cards
• Expert user who just wants to check facts
• Novice who wants to get overview of system�s capabilities

• Keyboard templates
• Shortcuts/syntactic meanings of keys; recognition vs. Recall;

capabilities
• Tooltips
• Text over graphical items indicates

their meaning or purpose

59

H10: types of help (cont�d)

• Context-sensitive help
• System provides help on the interface component the

user is currently working with
• Macintosh �balloon help�
• Microsoft �what�s this� help

• Wizards
• Walks user through typical tasks
• Reduces user autonomy

60

Reference

• https://www.nngroup.com/articles/ten-usability-heuristics/

61

