

CPSC 544: EXPERIMENTS II

Prof. Narges Mahyar

LEARNING GOALS

- why are statistics used?
- What is a T-test?
- what is an analysis of variance (ANOVA)?
- what is the important terminology in ANOVA?
- what are the different types of ANOVA?
- when would one choose to use an ANOVA?
- what other statistics are relevant to HCI?

STATISTICAL ANALYSIS

- what is a statistic?
 - a number that describes a sample
 - sample is a subset (hopefully representative) of the population we are interested in understanding
- statistics are calculations that tell us
 - mathematical attributes about our data sets (sample)
 - mean, amount of variance, ...
 - how data sets relate to each other
 - whether we are “sampling” from the same or different populations
 - the probability that our claims are correct
 - “statistical significance”

T-TEST

allows one to say something about differences between two means at a certain confidence level

null hypothesis of the t-test:

- no difference exists between the means

possible results:

- I am 95% sure that null hypothesis is rejected
 - there is probably a true difference between the means
- I cannot reject the null hypothesis
 - the means are likely the same

DIFFERENT TYPES OF T-TESTS

comparing two sets of independent observations

usually different subjects in each group (number may differ as well)

- Condition 1 Condition 2
- S1–S20 S21–S43

paired observations

usually single group studied under separate experimental conditions

data points of one subject are treated as a pair

- Condition 1 Condition 2
- S1–S20 S1–S20

Which one is
within-subject?
Between-subject?

DIFFERENT TYPES OF T-TESTS

comparing two sets of independent observations (between subjects)

usually different subjects in each group (number may differ as well)

- Condition 1 Condition 2
- S1–S20 S21–S43

paired observations (within subjects)

usually single group studied under separate experimental conditions

data points of one subject are treated as a pair

- Condition 1 Condition 2
- S1–S20 S1–S20

DIFFERENT TYPES OF T-TESTS

non-directional vs directional alternatives

non-directional (two-tailed)

- no expectation that the direction of difference matters

directional (one-tailed)

- only interested if the mean of a given condition is greater than the other

TWO-TAILED UNPAIRED T-TEST

n: number of data points in the one sample ($N = n_1 + n_2$)

$\sum X$: sum of all data points in one sample

\bar{X} : mean of data points in sample

$\sum(X^2)$: sum of squares of data points in sample

s^2 : combined sample variance

t: t ratio

df = degrees of freedom = $n_1 + n_2 - 2$

How to maximize t?

Formulas

$$s^2 = \frac{\sum(X_1^2) - \frac{(\sum X_1)^2}{n_1} + \sum(X_2^2) - \frac{(\sum X_2)^2}{n_2}}{n_1 + n_2 - 2}$$

$$t = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

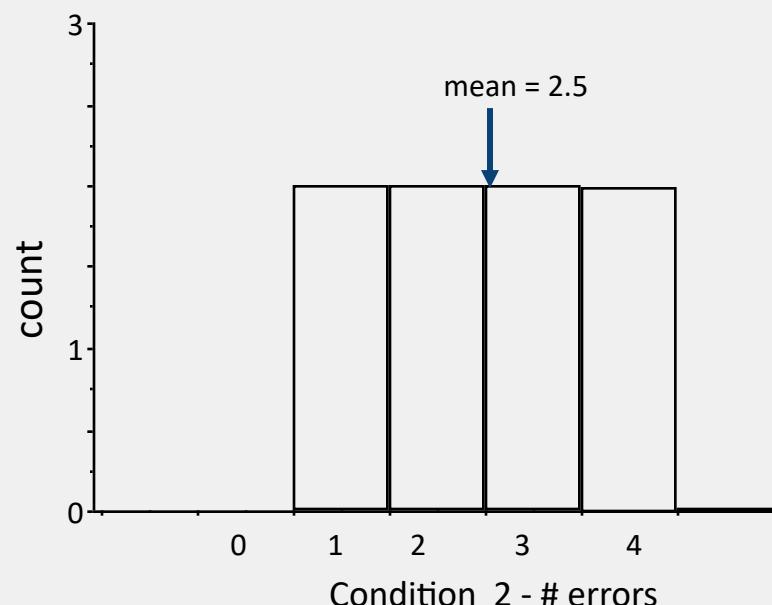
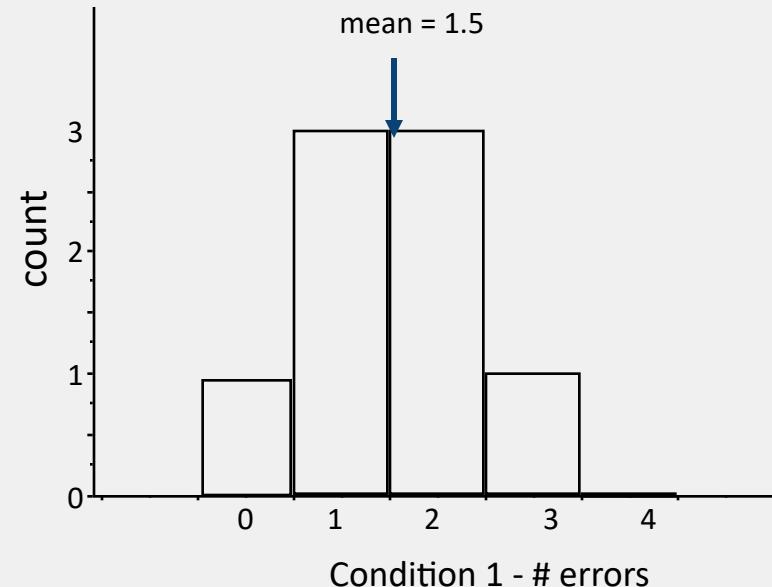
LEVEL OF SIGNIFICANCE FOR TWO-TAILED TEST

<i>df</i>	.05	.01
1	12.706	63.657
2	4.303	9.925
3	3.182	5.841
4	2.776	4.604
5	2.571	4.032
6	2.447	3.707
7	2.365	3.499
8	2.306	3.355
9	2.262	3.250
10	2.228	3.169
11	2.201	3.106
12	2.179	3.055
13	2.160	3.012
14	2.145	2.977
15	2.131	2.947

<i>df</i>	.05	.01
16	2.120	2.921
18	2.101	2.878
20	2.086	2.845
22	2.074	2.819
24	2.064	2.797

Critical value (threshold) that t statistic must reach to achieve significance.

How does critical value change based on *df* and confidence level?



BACK TO EXAMPLE:

scenario 2: assume we ran a between-subjects experiment, where we counted the # of errors under each condition

condition 1 (pop-up) : 0, 1, 1, 1, 2, 2, 2, 3

condition 2(pull down) : 1, 1, 2, 2, 3, 3, 4, 4

Is there ***a significant*** difference between the means?

TWO-TAILED UNPAIRED T-TEST

Condition one (pop up): 0, 1, 1, 1, 2, 2, 2, 3

Condition two (pull down): 1, 1, 2, 2, 3, 3, 4, 4

What the results would look like in R.

```
data: my_data$Condition.1 and my_data$Condition.2
```

```
t = -1.8708, df = 13.176, p-value = 0.08374
```

```
alternative hypothesis: true difference in means is not equal to 0
```

```
95 percent confidence interval:
```

```
-2.1531955 0.1531955
```

```
sample estimates:
```

```
mean of x mean of y
```

```
1.5 2.5
```

is the difference **significant?**

TWO-TAILED UNPAIRED T-TEST

Condition one (pop up): 0, 1, 1, 1, 2, 2, 2, 3

Condition two (pull down): 1, 1, 2, 2, 3, 3, 4, 4

data: my_data\$Condition.1 and my_data\$Condition.2

t = -1.8708, df = 13.176, p-value = 0.08374

hint ↗

probability that means are from the same underlying population

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-2.1531955 0.1531955

sample estimates:

mean of x mean of y

1.5 2.5

How does the outcome change for a confidence level of 0.10?

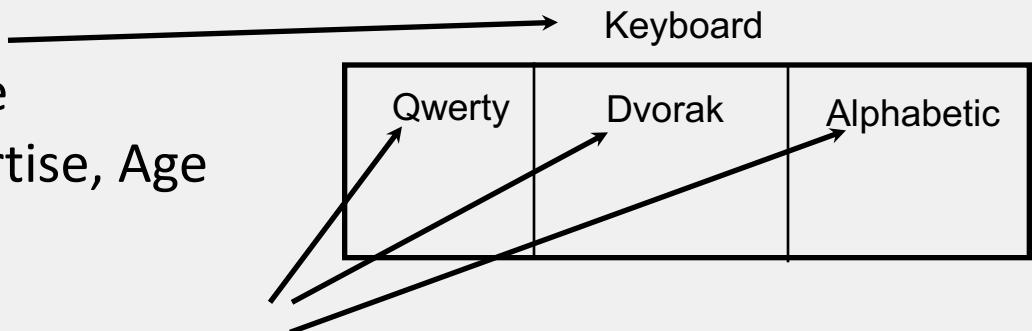
RECALL MENU HYPOTHESES

This time lets just hypothesize about error rate:

- H0: **there is no difference in error rate** when selecting a single item from a pop-up or a pull down menu - *cannot reject at 0.5 level*
- H1: **selecting from a pop-up menu will be less error prone** than selecting from a pull down menu

SUMMARY OF THE T-TEST

- the point: establish a confidence level in the difference we've found between 2 sample means.
- the process (what your stats software does under the hood):
 - compute df
 - choose desired significance, p (aka α)
 - calculate value of the t statistic
 - compare it to the critical value of t given p, df: $t(p, df)$
 - if $t > t(p, df)$, can reject null hypothesis at p


ANALYSIS OF VARIANCE (ANOVA)

- a workhorse
 - allows moderately complex experimental designs (relative to t-test)

- terminology

- **factor**

- independent variable
 - e.g., Keyboard, Expertise, Age

- **factor level**

- specific value of independent variable
 - e.g., Qwerty, novice, 10-12 year olds

ANOVA TERMINOLOGY

between subjects

- a subject is assigned to only one factor level of treatment
- problem: greater variability, requires more subjects

Keyboard	Qwerty	Dvorak	Alphabetic
	S1-20	S21-40	S41-60

within subjects

- subjects assigned to all factor levels of a treatment
- requires fewer subjects
- less variability as subject measures are paired
- problem: order effects (e.g., learning)
- partially solved by counter-balanced ordering

Keyboard	Qwerty	Dvorak	Alphabetic
	S1-20	S1-20	S1-20

F STATISTIC

within group variability (WG)

- individual differences
- error (random + systematic)

Keyboard		
Qwerty	Dvorak	Alphabetic
5, 9, 7, 6, ... 3, 7	3, 9, 11, 2, ... 3, 10	3, 5, 5, 4, ... 2, 5

between group variability (BG)

- treatment effects
- individual differences
- error (random + systematic)

Keyboard		
Qwerty	Dvorak	Alphabetic
5, 9, 7, 6, ... 3, 7	3, 9, 11, 2, ... 3, 10	3, 5, 5, 4, ... 2, 5

these two variability's combine to give total variability

- we are mostly interested in _____ variability because we are trying to understand the effect of the treatment

F STATISTIC

ANOVA is what we call an **omnibus** test

- tells us if $(\bar{x}_1 = \bar{x}_2 = \bar{x}_3)$ IS NOT true
- doesn't tell us HOW the means differ (i.e. $\bar{x}_1 > \bar{x}_2$)

Intuition...

$$f = \frac{BG}{WG} = \frac{\text{treatment} + \text{id} + \text{error}}{\text{id} + \text{error}} = ?$$

$= 1$, if there are no treatment effects

> 1 , if there are treatment effects

within-subjects design: the id component in numerator and denominator factored out, therefore a more powerful design

F STATISTIC

- similar to the t-test, we look up the f value in a table, for a given α and degrees of freedom to determine significance
- thus, f statistic is sensitive to sample size
 - Big N \longrightarrow Big Power \longrightarrow Easier to find significance
 - Small N \longrightarrow Small Power \longrightarrow Difficult to find significance
- what we (should) want to know is the effect size
 - does the treatment make a big difference (i.e., large effect)?
 - or does it only make a small difference (i.e., small effect)?
 - depending on what we are doing, small effects may be important findings

STATISTICAL SIGNIFICANCE VS. PRACTICAL SIGNIFICANCE

- when N is large, even a trivial difference (small effect) may be large enough to produce a statistically significant result
 - e.g., menu choice:
mean selection time of menu A is 3 seconds;
menu B is 3.05 seconds
- statistical significance does not imply that the difference is important!
 - a matter of interpretation, i.e., subjective opinion
 - should always report means to help others make their opinion
- there are measures for effect size
 - regrettably they are not widely used in HCI research

SINGLE FACTOR ANALYSIS OF VARIANCE

- compare means between two or more factor levels within a single factor
- e.g.:
 - dependent variable: typing speed (time)
 - independent variable (factor): keyboard
 - between subject design

also called
a one-way
ANOVA

Qwerty	Alphabetic	Dvorak
S1: 25 secs	S21: 40 secs	S51: 17 secs
S2: 29	S22: 55	S52: 45
...
S20: 33	S40: 33	S60: 23

ANOVA TERMINOLOGY

- factorial design
 - cross combination of levels of one factor with levels of another
 - e.g., keyboard type (3) x expertise (2)

2-way factorial
ANOVA

- Cell [or condition]

- unique treatment combination
- e.g., qwerty x non-typist

		Keyboard		
		Qwerty	Dvorak	Alphabetic
expertise	non-typist			
	typist			

ANOVA TERMINOLOGY

- mixed factor [split-plot]
 - contains both between and within subject combinations

		Keyboard		
		Qwerty	Dvorak	Alphabetic
expertise		non-typist	$S1-20$	$S1-20$
		typist	$S21-40$	$S21-40$

ANOVA

- compares the relationships between many factors
- provides more informed results
 - considers the interactions between factors
 - e.g.,
 - typists type faster on Dvorak, than on alphabetic and Qwerty
 - non-typists are fastest on alphabetic

		Keyboard		
		Qwerty	Dvorak	Alphabetic
expertise	non-typist	S1-20	S1-20	S1-20
	typist	S21-40	S21-40	S21-40

OTHER STATISTICAL TESTS COMMONLY USED IN H C I

- Your reading does a very good job of covering these, and we won't cover them further
 - Correlation
 - Regression
 - Non-parametric tests
 - Chi-squared
 - Mann-Whitney
 - Wilcoxon signed-rank
 - Kruskal-Wallis
 - Friedman's