690A: EXPERIMENTS I

Prof. Narges Mahyar

690A- Advanced Methods in HCI

Slides from Prof. Joanna McGrenere and Dr. Leila Aflatoony Includes slides from Prof. Karon MacLean and Jessica Dawson

TODAY

- Project questions [5 min]
- Experiments 1 lecture [30 min]
- In class activity [30 min]

LEARNING GOALS

- what is the experimental method?
- what is an experimental hypothesis?
- how do I plan an experiment?
- why are statistics used?
- within- & between-subject comparisons: how do they differ?
- significance levels and two types of error
 - what is the difference between a type I and type II error?
 - how does choice of significance levels relate to error types?
 - how do I chose a significance level?

Acknowledgement: Some of the material in this lecture is based on material prepared for similar courses by Saul Greenberg (University of Calgary)

- some portion of the material in these lectures on experimental design should be familiar from ugrad stats class, although perhaps presented here from a slightly different perspective
- much of this material is well covered in today's readings:

Hochheiser, H., Feng, J. H., & Lazar, J. (2017).

- Experimental research. Chapter 2.
- Experimental design. Chapter 3.

MATERIAL ASSUME YOU ALREADY KNOW AND WILL NOT BE COVERED IN LECTURE

- types of variables
- samples & populations
- normal distribution
- variance and standard deviation

a small number of slides on these topics at the end of this lecture if you need review on your own time; largely repeat what was in the readings.

CONTROLLED EXPERIMENTS

the traditional scientific method

- reductionist
 - clear convincing result on specific issues
- in HCl
 - insights into cognitive process, human performance limitations, ...
 - allows comparison of systems, fine-tuning of details ...

strives for

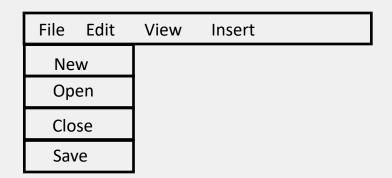
- lucid and testable hypothesis (usually a causal inference)
- quantitative measurement
- measure of confidence in results obtained (inferencial statistics)
- replicability of experiment
- control of variables and conditions
- removal of experimenter bias

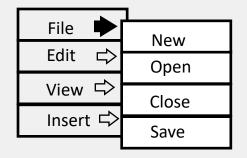
DESIRED OUTCOME OF A CONTROLLED EXPERIMENT

statistical inference of an event or situation's probability:

"Design A is better <in some specific sense than Design B"

or, Design A meets a target:


"90% of incoming students who have web experience can complete course registration within 30 minutes"


STEPS IN THE EXPERIMENTAL METHOD

STEP I: BEGIN WITH A TESTABLE HYPOTHESIS

Example 1:

- H₀: there is no difference in user performance (time and error rate) when selecting a single item from a pop-up or a pull down menu
- H₁: selecting from a pop-up menu will be faster and less error prone than selecting from a pull down menu

GENERAL: HYPOTHESIS TESTING

hypothesis = **prediction** of the outcome of an experiment.

- framed in terms of **independent** and **dependent** variables:
 - a variation in the independent variable will cause a difference in the dependent variable.
- aim of the experiment: prove this prediction
 - by: disproving the "null hypothesis"
 - never by: proving the "alternate hypothesis"

 H_0 : experimental conditions have *no* effect on performance (to some degree of significance) \rightarrow null hypothesis

H₁: experimental conditions have an effect on performance (to some degree of significance) \rightarrow alternate hypothesis

STEP 2: EXPLICITLY STATE THE INDEPENDENT VARIABLES

Independent variables

- things you control/manipulate (independent of how a subject behaves) to produce different conditions for comparison
- two different kinds:
 - treatment manipulated (can establish cause/effect, true experiment)
 - subject individual differences (can never fully establish cause/effect) [not covered in the reading]

STEP 2: EXPLICITLY STATE THE INDEPENDENT VARIABLES

in menu experiment

- 1. menu type: pop-up or pull-down
- 2. menu length: 3, 6, 9, 12, 15
- 3. expertise: expert or novice

STEP 3: CAREFULLY CHOOSE THE DEPENDENT VARIABLES

Dependent variables

- things that are measured
- expectation that they depend on the subject's behaviour / reaction to the independent variable (but unaffected by other factors)

What else could we measure?

• in menu experiment:

worksheet

STEP 4: CONSIDER POSSIBLE NUISANCE VARIABLES &

DETERMINE MITIGATION APPROAC

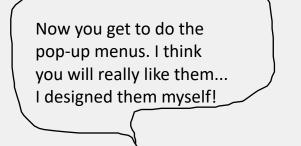
- undesired variations in experiment conditions which cannot be eliminated, but which may affect dependent variable
 - critical to know about them
- experiment design & analysis must generally accommodate them:
 - treat as an additional experiment independent variable (if they can be controlled)
 - randomization (if they cannot be controlled)
- common nuisance variable: subject (individual differences)

STEP 5: DESIGN THE TASK TO BE PERFORMED

tasks must:

be externally valid

- external validity = do the results generalize?
- ... will they be an accurate predictor of how well users can perform tasks as they would in real life?
- for a large interactive system, can probably only test a small subset of all possible tasks.


exercise the designs, bringing out any differences in their support for the task

 e.g., if a design supports website navigation, test task should not require subject to work within a single page

be feasible - supported by the design/prototype, and executable within experiment time scale

STEP 6: DESIGN EXPERIMENT PROTOCOL

- steps for executing experiment are prepared well ahead of time
- includes unbiased instructions + instruments (questionnaire, interview script, observation sheet)
- double-blind experiments, ...

STEP 7: MAKE FORMAL EXPERIMENT DESIGN EXPLICIT

simplest: 2-sample (2-condition) experiment

- based on comparison of two sample means:
 - performance data from using Design A & Design B
 - e.g., new design & status quo design
 - e.g., 2 new designs
- or, comparison of one sample mean with a constant:
 - performance data from using Design A, compared to performance requirement
 - determine whether single new design meets key design requirement

STEP 7: MAKE FORMAL EXPERIMENT DESIGN EXPLICIT

more complex: factorial design

in menu experiment:

- 2 menu types (pop-up, pull down)
- x 5 menu lengths (3, 6, 9, 12, 15)
- x 2 levels of expertise (novice, expert)

WITHIN/BETWEEN SUBJECT COMPARISONS

within-subject design:

- subjects exposed to multiple treatment conditions
- \rightarrow primary comparison internal to each subject
- allows control over subject variable
- greater statistical power, fewer subjects required
- not always possible (exposure to one condition might "contaminate" subject for another condition; or session too long)

WITHIN/BETWEEN SUBJECT COMPARISONS

between-subject design:

subjects only exposed to one condition

- \rightarrow primary comparison is from subject to subject
- less statistical power, more subjects required
- why? because greater variability due to more individual differences

split-plot design (also called mixed factorial design)

combination of within-subject and between-subject in a factorial design

WITHIN/BETWEEN SUBJECT COMPARISONS

- in menu experiment :
 - 2 menu types (pop-up, pull down)
 - x 5 menu lengths (3, 6, 9, 12, 15)
 - x 2 levels of expertise (novice, expert)
- in password experiment:
 - 2 training (yes, no)
 - x 3 types of online service (financial, e-commerce, other)
 - x 2 general computer expertise (novice, expert)

STEP 8: JUDICIOUSLY SELECT/RECRUIT AND ASSIGN SUBJECTS TO GROUPS

subject pool: similar issues as for informal and field studies

- match expected user population as closely as possible
- age, physical attributes, level of education
- general experience with systems similar to those being tested
- experience and knowledge of task domain

sample size: more critical in experiments than other studies

- going for "statistical significance"
- should be large enough to be "representative" of population
- guidelines exist based on statistical methods used & required significance of results
- pragmatic concerns may dictate actual numbers
- "10" is often a good place to start

STEP 8: JUDICIOUSLY SELECT/RECRUIT AND ASSIGN SUBJECTS TO GROUPS

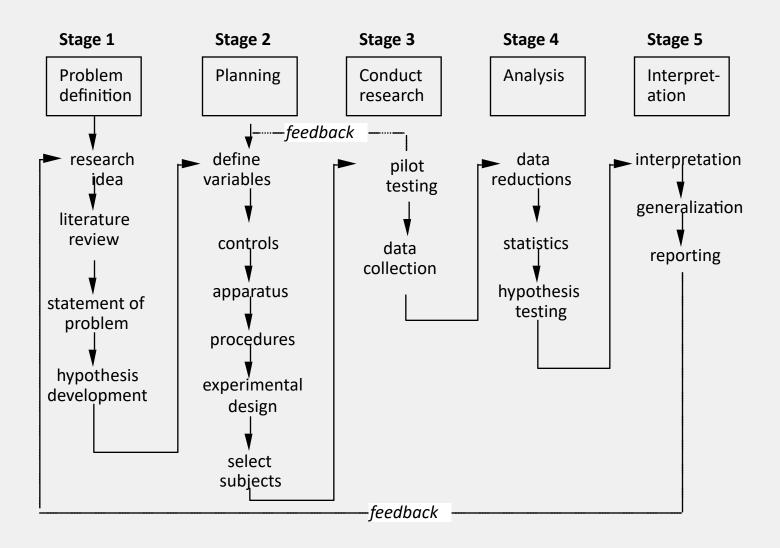
- if there is too much variability in the data collected, you will not be able to achieve statistical significance
- you can reduce variability by controlling subject variability
- how?
 - recognize classes and make them an independent variable
 - e.g., older users vs. younger users
 - e.g., superstars versus poor performers
 - use reasonable number of subjects and random assignment

Novice

STEP 9: APPLY STATISTICAL METHODS TO DATA ANALYSIS

examples: t-tests, ANOVA, correlation, regression

confidence limits: the confidence that your conclusion is correct


- "The hypothesis that mouse experience makes no difference is rejected at the .05 level" (i.e., null hypothesis rejected)
- this means:
 - a 95% chance that your finding is correct
 - a 5% chance you are wrong

STEP 10: INTERPRET YOUR RESULTS

what you believe the results mean, and their implications

 yes, there can be a subjective component to quantitative analysis

THE PLANNING FLOWCHART

TO SUMMARIZE SO FAR: HOW A CONTROLLED EXPERIMENT WORKS

- 1. formulate an **alternate** and a **null** hypothesis:
 - H₁: experimental conditions have an effect on performance
 - H₀: experimental conditions have no effect on performance
- 2. through **experimental task**, try to demonstrate that the null hypothesis is false (reject it),
 - for a particular level of significance
- 3. if successful, we can accept the alternate hypothesis, and state the probability p that we are wrong (the null hypothesis is true after all) → this is result's confidence level e.g., selection speed is significantly faster in menus of length 5 than of length 10 (p<.05)</p>
 - → 5% chance we've made a mistake, 95% confident

SIGNIFICANCE LEVELS & TWO TYPES OF ERRORS

TWO TYPES OF ERRORS

Type I error: reject the null hypothesis when it is, in fact, true

- We conclude that there is a genuine effect, when there isn't one (false positive)
- Confidence level for statistical tests , α -level (e.g., α = .05), is probability of a Type I error

Type II error: accept the null hypothesis when it is, in fact, false

- We conclude that there is no effect, when there actually is one (false negative)
- $-\beta$ -level is probability of a Type II error
 - related to power (which is defined as 1- β), and which depends on α -level, effect size, and sample size

Tradeoffs and Significance Levels

	Reality	
Outcome of Exp't	H ₀ True	H_0 False
Reject H ₀	Type I error (false positive)	Correct inference (true positive)
Fail to Reject H ₀	Correct inference (true negative)	Type II error (false negative)

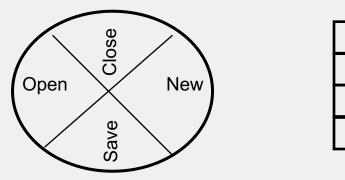
Trade-off exists between planning for these two types of errors

- If try to protect against Type I errors (e.g., set very high confidence level α = .001 to make it harder to mistakenly believe an effect exists when it doesn't), then a much greater chance of Type II errors
- If we try to protect against Type II errors (e.g., set low confidence level α = .1 to make it easier to detect an effect if it exists), then a much greater chance of Type I errors

choice of significance level therefore often depends on effects of result

EXAMINING EFFECT OF EACH TYPE OF ERROR

New


Open

Close

Save

Consider the comparison of two types of menus for user speed. . . .

- H₀ There is no difference between Pie menus and traditional pop-up menus
- H₁ Pie menus are faster than traditional pop-up menus

What happens if you make a

- Type I error: (reject H₀, conclude there is a difference, when there isn't one)
 effect of making this error?
- Type II: (fail to reject H₀, believe there is no difference, when there is)
 - effect of making this error?

CHOICE OF SIGNIFICANCE LEVELS AND TWO TYPES OF ERRORS

What happens if you make a

- Type I: (reject H₀, believe there is a difference, when there isn't)
 - extra work developing software and having people learn a new idiom for no benefit
- Type II: (accept H₀, believe there is no difference, when there is)
 - use a less efficient (but already familiar) menu

Consider the follow scenarios, where you want to run an experiment to decide which menu type to implement.

For each, is Type I or Type II error preferable? Why?

- Scenario 1: Redesigning a traditional GUI interface
 - your team proposes replacing the existing pop-up menus in your company's flagship application, which is widely used globally by users with a wide range of expertise, to improve user performance

• Scenario 2: Designing a new application

 Your team is designing a new digital mapping application. It will require expert users to perform extremely frequent menu selections.

ADDITIONAL SLIDES: MATERIAL ASSUMEYOU KNOW

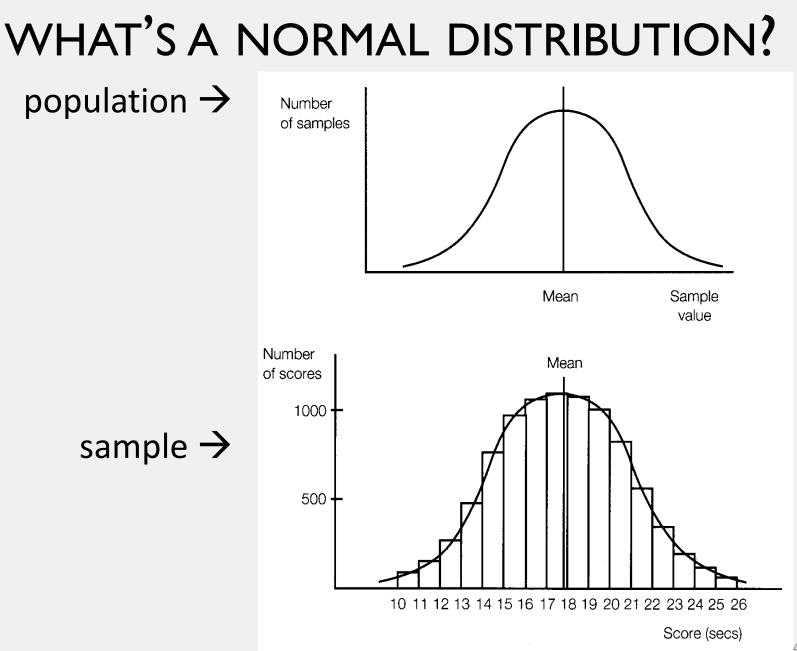
- types of variables
- samples & populations
- normal distribution
- variance and standard deviation

TYPES OF VARIABLES (INDEPENDENT OR DEPENDENT)

- discrete: can take on finite number of levels
 - e.g. a 3-color display can only render in red, green or blue;
 - a design may be version A, or version B
- continuous: can take any value (usually within bounds)
 - e.g. a response time that may be any positive number (to resolution of measuring technology)
- normal: one particular distribution of a continuous variable

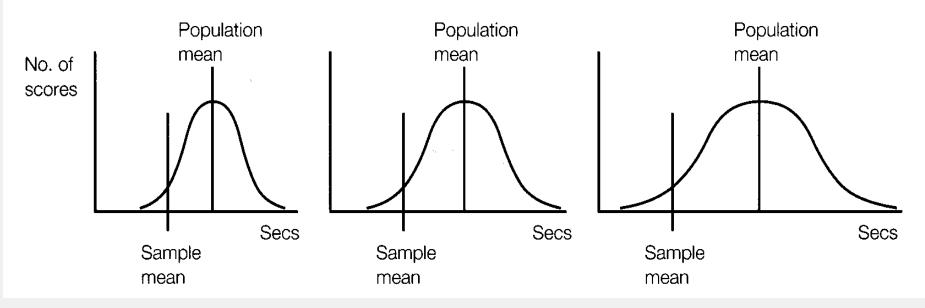
POPULATIONS AND SAMPLES

- statistical sample = approximation of total possible set of, e.g.
 - people who will ever use the system
 - tasks these users will ever perform
 - state users might be in when performing tasks
- "sample" a representative fraction
 - draw randomly from population
 - if large enough and representative enough, the sample mean should lie somewhere near the population mean


population

CONFIDENCE LEVELS

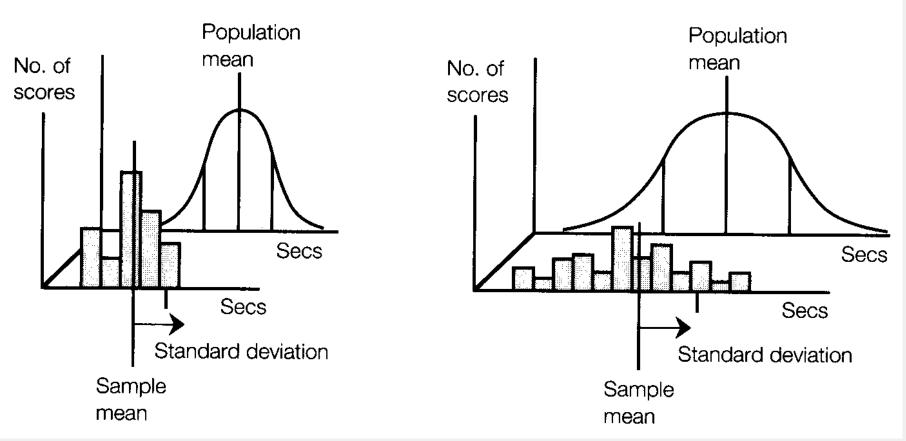
- "the sample mean should lie somewhere near the population mean"
- how close?
- how sure are we?
- a confidence interval provides an estimate of the probability that the statistical measure is valid:
- "We are 95% certain that selection from menus of five items is faster than that from menus of seven items"
- how does this work? important aspect of experiment design


ESTABLISHING CONFIDENCE LEVELS: NORMAL DISTRIBUTIONS

- fundamental premise of statistics:
 - predict behavior of a population based on a small sample
- validity of this practice depends on the distribution
 - of the population and of the sample
- many populations are normally distributed:
 - many statistical methods for continuous dependent variables are based on the assumption of normality
- if your sample is normally distributed, your population is likely to be,
 - and these statistical methods are valid,
 - and everything is a lot easier.

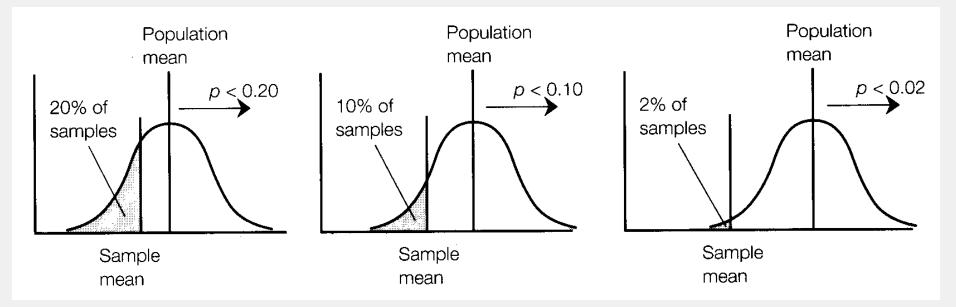
VARIANCE AND STANDARD DEVIATION

• all normal distributions are not the same:



 population variance is a measure of the distribution's "spread" all normal population distributions still have the same shape

HOW DO YOU GET THE POPULATION'S VARIANCE?


1 7 .

estimate the population's (true) variance

WHAT'S THE BIG DEAL?

- if you know you're dealing with samples from a normal distribution,
- and you have a good estimate of its variance
 - (i.e. your sample's std dev)

