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ABSTRACT 
To make a single diagnosis, today’s radiologists must 
examine thousands of images; yet little effort has been put 
into refining this time-consuming, repetitive task. 
Meanwhile, automatic or radiologist-generated annotations 
may impact how radiologists navigate image stacks as they 
review lesions of interest. Observation and/or interviews of 
19 radiologists revealed that stack scrolling dominated the 
resulting task examples. We iteratively crafted and obtained 
radiologist feedback for a variety of prototypes, then 
evaluated their scrolling and annotation-review support for 
lay users. With a simplified stack seeded with correct / 
incorrect annotations, we compared the effect of four 
scrolling techniques (traditional scrollwheel and click-and-
drag, plus sliding-touch, and tilt rate control) and visual vs. 
haptic annotation cues on scrolling dynamics, detection 
accuracy and subjective factors. Scrollwheel was fastest 
overall, and combined visual / haptic annotation cues sped 
target-finding relative to either modality alone. We share 
insights on integrating our findings into radiologist practice.  

Author Keywords 
Input device; prototyping; scrolling; haptic; tactile; mouse; 
computer-aided diagnosis (CAD); radiology. 

ACM Classification Keywords 
H.5.m. Information interfaces and presentation (e.g., HCI).  

INTRODUCTION  
To utilize the detailed information provided by today’s 
high-resolution image capture technologies, such as 
Magnetic Resonance Imaging (MRI) and Computed 
Tomography (CT), radiologists must examine ever-larger 
image sets. It is not uncommon for multi-trauma CT scans 
or coronary CT angiograms to have data sets of 4000 
images [5]. Diagnosis entails a complex, time-pressured 
visual search task. Target conspicuity, background clutter 
and other attentional factors can influence the radiologist’s 
ability to detect anomalies [5], and radiologists are put at 
substantial risk of repetitive strain injury [13]. 

Radiology images (e.g. Figure 1) are currently viewed as 
single 2D slices [5, 6], arranged in a stack through which 
the user scrolls depthwise. The main interaction tool, a 
scrollwheel mouse, has not changed since ~1995; but in 
contrast to x-ray images, image stacks are continuous media 
streams. Efficient perusal demands fluid, controllable 
interaction akin to video scrubbing [19], as has been 
demonstrated with a haptic scrollwheel [24]. A 
conventional mouse’s restricted input mobility (x-y hand 
movement and finger-level scrollwheel movement) has 
limited ability to support this.  

Meanwhile, the daunting scope of the image-viewing task 
makes it a candidate for semi-automation, e.g. computer-
aided detection (CAD) of anomalies in images [10]. Such 
algorithms are tuned to find all real anomalies (true 
positives), at the cost of substantial rates of false positives, 
which radiologists must then discriminate. While accuracy 
and number of events varies, at 5-7 seconds to re-evaluate a 
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Figure 1: Left: early sketch (Polymorph™, knitted wool, polymer stuffing with many potential interaction movements). Middle: 
image of lungs with annotated potential nodule, from Amato S.G. et al. Radiology 225: 685-692, 2002. Right: Shows the relative 

scrolling speed for a task for the four scrolling techniques and three annotation modalities (visual (V), Haptic (H), and both (V+H)) 
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CAD-identified nodule [22] there is clearly a cost to 
potential time and accuracy gains. Similar issues exist for 
annotations from other sources, e.g. other radiologists, in 
redundant procedures and peer reviews or training reviews.   

Stack annotation can affect detection accuracy [2, 10]. Of 
concern is context bias (radiologists’ diagnostic sensitivity 
depends on expected prevalence of a given anomaly [12]); 
and automation bias (CAD misses particular cancer types). 
Learned dependency can also lead the user to miss.  

How might alternative annotation presentation affect bias? 
CAD data is now presented as visual highlights, which may 
be more likely than another modality to influence what the 
radiologist sees at perceptual, attentional and strategic 
levels. Integrated with care, haptic highlights might also 
avoid an identified risk of degrading the decision process 
through simple sensory overload [18]: visual systems are 
highly tasked, and the hospital environment is noisy.  

Neither adding a specialized device nor compromising 
familiar mouse functions are likely to be accepted. 
Radiologists heavily use other manual tools (keyboard, 
dictaphone), and oscillate swiftly between GUI pointing 
and stack strolling. Proprietary data systems enforce device 
standards. The x-y mouse is best for pointing [13], and its 
ease of use and familiarity make it favored relative to 
alternative input devices in this setting (e.g. [23]).  

APPROACH 
With a focus on ergonomic stressors and opportunities for 
aligning tasks with interface advances, we observed and 
interviewed radiologists and analyzed their manual tasks. 
We identified a design space, then brainstormed and 
prototyped alternative input models with different mobility 
affordances (ways in which the user’s hand can move when 
interacting with the device). We reviewed these prototypes 
with domain experts for improved support of key tasks.   

We next analyzed 19 radiologists’ work via observation 
and/or interviews, leading to mouse augmentations which 
we hypothesized could support (a) more efficient image 
scrolling (with more fluid interaction) and (b) attentionally 
improve annotation display (using the haptic modality). 
After a round of qualitative feedback and iteration on our 
prototypes and the interactive techniques they support, we 
examined the impact of interaction and display on detection 
rates in a controlled, study with lay users as proxies for 
hard-to-access radiologists. Here, we used an abstracted 
detection task whose representative nature we confirmed 
with experts. Finally, we integrate these findings with 
radiologist feedback into recommendations for next steps. 

We contribute: 
• A set of verified task examples (Table 1) that capture the 

most important manual radiology image interactions. 
• Prototypes representing a set of novel scrolling inputs. 
• An abstracted task suitable for screening scrolling- and 

annotation-type candidates on lay users. 

• Quantitative data on detection accuracy and subjective 
reactions to scrolling type and annotation modality 
(summarized in right of Figure 1).  

• A proposal for how haptics can increase effectiveness by 
minimizing bias in review of annotated data. 

BACKGROUND 

The Radiologist’ Work Environment and Constraints 
To view images, radiologists use two or three high-
resolution LCD monitors, a mouse for stack navigation and 
GUI navigation, and keyboard and dictaphone to transcribe 
diagnoses. Data is provided via a Picture Archiving and 
Communication System (PACS): workstation, software, and 
network for image storage and retrieval according to 
industry standards. PACS are sourced by health authorities 
as major capital investments from a small number of 
medical imaging vendors, and have proprietary elements.  

Viewing Images by Scrolling 
Scrolling is integral to image review. CT image 
consumption is faster in a (serial) stack than in parallel as 
multiply-visible tiles, probably due to eased perception of 
3D structures [20]. Radiologists scroll at different speeds, 
stop, and reverse to compare or examine locations. They are 
trained to review specific anatomical structures, and make 
successive passes focusing on each in turn.  

PACS workstations typically support two scrolling 
techniques: scrollwheel and click-&-drag. Both employ 
position control (scrolling distance is proportional to the 
position of mouse or angle traversed by scrollwheel). 
Atkins et al. [6] compared scrollwheel and click-&-drag 
techniques to a jogwheel (a rate control device: scrolling 
rate is proportional to input position), and found that most 
radiologists preferred the more familiar position control 
even though some were faster with rate control. Relative 
movement rates were generally fastest for the wheel/click-
&-drag combination, slowest with wheel alone, and in 
between for jogwheel [6]. Sherbondy et al. used a tablet and 
stylus for scrolling, and found that position was faster than 
rate control for finding a target in a CT stack [23].  

When the user knows where the target is, scrolling is 
modeled by Fitts’ Law for techniques including rate 
control, scrollwheel, and wheel with acceleration [14]. But 
with visual target search (e.g., reviewing an annotated 
stack), scrolling time depends on distance to target [4].  

Beyond the Mouse, and Direct-Touch Sensing 
Multi-touch sensing has become a ubiquitous manual 
control. In an early mouse example, Hinkley et al. explored 
touch sensing near the scrollwheel, and found it a useful 
discrete alternative, e.g. tapping to page up/down [15]. 
Villar et al. found that multi-touch in five form factors  
could extend control degrees of freedom and support 
different input modes [26], mitigating the need to switch 
between devices. They advised locating touch-sensed areas 
in easy reach of one hand posture, and cuing their location.  
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Flying mice and other tracked devices can be lifted off the 
table surface. Direct mapping to a 3D space makes them 
easy to learn [29]; but fatigue in maintaining cursor 
persistence make them unsuitable for radiology interaction.  

A pen and tablet solution showed decreased times relative 
to a mouse for the radiology task of outlining a region of 
interest [9]. However, switching between different devices 
may hinder radiologists’ workflow. Direct-touch reduces 
the need for device switching, but creates occlusion [27] 
and fatigue from unsupported hands [28].  

Other desk-supported concepts have diversified interaction. 
The “Rockin’ Mouse” adds a degree of freedom; faster than 
a normal mouse in 3D, scrolling was not studied [7]. Many 
other control movements could be used with a mouse-like 
device, but have not been explored in the radiology setting. 

Haptic Feedback in Support of Scrolling 
Akamatsu et al. found that for a pointing task with a mouse, 
tactile feedback (pin pushing into fingerpad when on target) 
was quickest, and no feedback slowest for final positioning 
times [1]. Levesque et al. saw variable friction feedback 
speed up target selection on a touch screen [17]. For a 
different mobile device, tilting to scroll was augmented 
with a vibrotactile (VT) buzz at transition to the next item 
on the list. VT feedback lowered task completion time, and 
position was faster than rate control [21]. 

These results suggest that haptic feedback on possible 
targets will give modest performance gains (and not losses), 
even if the system does not know where the user is heading. 
The prevalence of detents on a mouse in a radiology setting 

indicates radiologists may be receptive to this. 

Computer Aided Detection (CAD) 
Most CAD research focuses on validating that CAD 
information, provided as visual image annotations, 
improves radiologist detection sensitivity and/or speed [10]. 
However, annotations overlaid on the stack affect what 
radiologists see. Even when biased towards finding 
everything, CAD misses 20% [10], and leads to automation 
bias. Radiologists attending to annotated areas are more 
likely to miss artifacts not found by the CAD. Alberdi et al. 
found a lower detection rate for users given CAD 
information in comparison to those who were not; here, the 
largest difference was seen in cancers not found by CAD. 
They hypothesized a bias effect, where users calibrate to the 
expected prevalence of cancers and expected proportion of 
cancers missed by CAD in the current data set [2]. 
Additionally, a criticism of many CAD studies is that the 
data sets used contain an unrealistic proportion of cancers, 
and radiologists know this [2]. We have not seen studies 
that modified how CAD annotations are displayed; yet this 
may help mitigate the detection bias that CAD produces. 

Table 1: Task Examples, and the mean responses for each from the Likert scale questionnaire (1=not at all, 5=extremely). 

1. Identifying or finding a specific piece of anatomy 
The radiologist looks for an object or area of interest in one anatomical 
plane, looking through several slices to find and properly identify it. If 
unsure, or things are unusual, then s/he may look at the area in another 
plane (or several other planes if they are available). Can cross-reference a 
point between different planes, to see the location in other planes. 
Additionally, they may adjust the window/level to get better contrast 
between the object and its surrounds.   

4. Comparing two images (old and new) 
The goal is to look for interval change: differences between the sets of 
image. Do new objects appear, have old objects enlarged? The radiologist 
brings up both sets of diagnostic images and looks at the same plane and 
area in each image side by side. They scroll back and forth in each set of 
images, comparing the areas of interest (can link the two images so they 
scroll together, but the slices may not land at exactly the same spots). They 
may re-measure objects that were found in the first diagnostic to see if they 
have changed in size. 

Importance: 4.7 Frequency: 4.4 Difficulty: 2.4 Support: 3.4 Importance: 4.9 Frequency: 4.6 Difficulty: 2.5 Support: 3.0 

2. Defining the edge / size of something  
The radiologist may want to know the size of an object, or if it is 
encroaching on the area of other anatomy. Window/level may be used to 
get better contrast of the object to its surrounds. After looking at the 
object in several planes, they choose a specific image, or multiple images, 
to outline, circle, or measure the diameter of the object. 

5. Identifying the makeup of something 
The radiologist may want to know what something abnormal is composed 
of. They look at the item in several planes, and see the attenuation of the 
item. They may adjust the window/level to get the best contrast with the 
surrounds, or to see colour differences within the object. To know the 
density of the item from the imaging they can select part or all of it and see 
the density number. 

4.2 3.8 2.5 3.6 4.3 3.7 2.2 3.3 

3. Tracking / connecting objects 
The radiologist follows a part of the anatomy through several slices to 
check for abnormalities. The radiologist moves back and forth through 
the image slices while watching the area of interest. If they feel they have 
missed something, or loose track of the object they may slow down and 
watch more carefully for a subset of the image slices. This is repeated as 
many times as needed for different anatomical parts, usually by organ 
system but sometimes by area (such as in the brain). 

6. Getting a second opinion 
If the radiologist is unsure of something, less familiar with it, or finds 
something unusual, they may ask the opinion of another radiologist. 
Another option is to look up papers on the topic to help confirm the 
diagnosis or learn about more nuanced aspects they cannot remember off 
the top of their head. 

4.8 4.8 2.8 3.1 4.4 3.2 2.7 2.9 

 

Table 2: Aggregate results of task example questionnaire (mean 
/ SD of all responses, after averaging by task example) 

Topic M SD Response Range of Mean 
Importance 4.55 0.29 very – extremely 
Frequency 4.08 0.61 very – extremely 
Difficulty 2.52 0.21 not very –  somewhat 
Support 3.22 0.26 somewhat -- very 
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Rubin et al. [22] saw CAD had a significantly higher 
sensitivity to finding lesions missed by a first human reader, 
in comparison to a second human reader. However, this 
comparison posits unrealistically that the user of the CAD 
annotations would accept all true positives and reject all 
false positive CAD detections.  

In low-dose CT images, a CAD scheme detected 83 percent 
of lung nodule cancers (in stacks with on average 1-2 
nodules), with 5.8 false positives per scan [10]. Another 
scheme (run on different scans, containing some potentially 
more subtle cancers) detected 80 percent, with 2.7 false 
positives per scan. In our experiment we therefore 
manipulate annotation display assuming a detection ratio of 
80% to align with current CAD performance.  

TASK ANALYSIS 
We analyzed physical interactive elements of the 
radiologists’ workflow in a two-stage process.  

Task Example Creation 
We informally observed and interviewed 12 radiologists 
within a variety of work settings, over 1-3 sessions in 
blocks of around 30 minutes. They had many suggestions 
for PACS software improvements (out of our scope) as well 
as for physical image interaction. We noticed some 
disparities between observation and self-report in activities 
(e.g. percentage of scrollwheel vs. click-&-drag use), which 
may point to subjective importance. We captured this 
domain-expert input in a set of task examples (Tables 1-2). 
Task Example Validation  
To verify that our task examples faithfully represented the 
most important elements of radiology image interaction, we 
took them more formally to ten radiologists (8 male; 
including 3 from the original 12), recruited by email from 
hospital administration and word of mouth. Our participants 
had experienced a variety of work settings in a mid-sized 
North American city (e.g. academic hospital radiology 
department, private lab, city hospital emergency room) and 
professional roles (interventional radiology, diagnostics, 
neuroradiology). Career experience ranged from 0-31 years 
(avg. 12.7). All were familiar with touch devices and owned 
and/or often used one. Six reported ergonomic issues from 
extended PACS use, including shoulder pain, eyestrain, and 
repetitive use of the scrollwheel.  

In ~15-minute workplace sessions, volunteers read the task 
examples, answered a questionnaire, and were interviewed. 

Questionnaire: Four 5-point Likert scale questions, 
repeated for each task example, asked how important, 
frequent, difficult, and well supported that example was. 
Tables  1-2 detail and summarize this quantitative data. 

Interview: We voice-recorded discussion of a set of open-
ended questions, asking them to identify: 
• Missing tasks they find important, frequent, or difficult.  
• What is well and poorly supported by PACS they have 

used (many had experience with different PACS brands). 

• Mouse interactions they found tiring or repetitive. 
• Any issues with repetitive strain injuries. 

Importance 
Each of the six tasks was rated as very or extremely 
important by at least 8/10 participants. P1 summarized that 
“they all seem extremely important to me”. Participants 
either said no important tasks had been overlooked (2), or 
gave examples of very specialized or specific tasks (8).  

Frequency and Repetitiveness 
Tasks 1-5 were labeled very or extremely frequent by 6-10 
participants, with Tasks 3 and 4 rated highest. Task 6 was 
less frequent (but of high importance). We note that area of 
specialization is likely to play a role in these assessments.  

Participants verbally identified the most repetitive task as 
scrolling: “When you are looking at [a] CT that has 350 
images in it, and you are looking at every image, that takes 
a lot of scrolling up and down” [P7]. P6 noted that scrolling 
is very mouse-intensive and therefore a way to end up with 
an injury, then suggested having a way “to scroll through a 
large amount of data set with minimal hand motion”.  

On scrolling and speed, P2 commented: “I use scroll-wheel 
way more often than the drag stuff.” When asked if it was 
hard to go fast enough, P2 replied, “Yeah… But it’s too 
hard to go slow enough with the click-&-drag… something 
in between, so if you had a dual function?” 

Difficulty 
Generally, task difficulty arose from diagnostic complexity, 
e.g. “when there is complex anatomy, complex disease 
processes” [P7]; or ambiguity: “to know what is normal, or 
what is in the range of normal, or where it starts to be 
abnormal or pathologic” [P8]. 

Discussion resolved the potential ambiguity of responses 
indicating both low-difficulty and low-support (s): 
radiologists have figured out ways to perform necessary 
tasks, accommodating non-optimal support, and no longer 
find them difficult; but still wish for better support.  

Device Interaction 
Participants suggested device improvements, with many 
relating to functional specificity: “I would prefer to have 
more buttons, with less functionality per button” [P5]. P1 
mentioned speed interfering with functional mapping; a 
rapid clicker, double clicking was mapped to a function he 
did not usually mean to invoke. P2 had even considered 
adding his own accessory to the PACS workstation: “At 
one point I was considering getting a gaming accessory 
pad… so you could mouse or move over to the pad”. 

Summary: 
Scrolling is an essential and frequent part of radiology 
interaction: validated tasks 1-5 require scrolling, and 
radiologists confirmed their frequency and importance. 
Discussion confirmed both centrality of scrolling in routine 
activities, and the need and possibility for improvement of 
image interaction via device and/or software.  
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The most crucial challenges in current scrolling technology 
identified were: reducing repetitive movements, more easily 
varying the speed of scrolling, and more functionality 
mapped to the device.  
Many PACS aspects are somewhat personalizable: e.g. “I 
can’t imagine using PACS without having my custom way 
of looking at it” [P4]. Radiologists were generally receptive 
to the idea that the input device could be more personalized, 
for instance with pre-set scrolling speeds. 

DESIGN SPACE AND PROTOTYPES 
We identified a scrolling-input-mobility design space to 
explore for possible improvements to identified challenges, 
which includes current baseline methods and adds diversity 
in input control (Table 3). We populated this input-modality 
design space with three exploratory prototypes (one 
representing two design dimensions), constructed by 
modifying existing mice (Figure 3). 

(All): VT Annotation Display: A pager motor generated a 
vibrotactile buzz in all prototypes, perceptible in all hand 
positions observed. In pilots, we arrived at a 200ms (pager 
motor supplied 3V, ~200 Hz) cue at the annotated image, 
with a 1-image advance for fast scrolling (<10 images/sec), 
so that the majority of the buzz was felt on the image.  

Touch: An Apple Magic Mouse™ (curved multi-touch 
surface) was modified by adhering a pager motor to the 
underside of the touch surface, adding ~1cm to its height. 
The multi-touch surface was of interest because custom 
gestures  (the requested extra ‘buttons’) could be mapped 
onto it, but this ability was not tested here.  

Tilt: A curved top surface with profile matching the Magic 
Mouse was 3D-printed and a pager motor placed on its 
underside. Springs at either end achieved stable centering of 

a curved bottom surface. An accelerometer, read by an 
Arduino Uno, detected its tilt angle which, configured for 
rate control, controlled rate of movement through the stack. 

Wheel / Click-&-Drag: To provide baseline comparisons at 
a comparable level of prototype polish, we replaced the top 
of a traditional mouse with a 3D-printed surface identical to 
Tilt’s but with a slot for the scrollwheel, and attached a 
pager motor to the underside of this surface.  

(All): Connectivity: Prototypes communicated with a 
custom image-viewing program (written in C++) on a 
control laptop via an Arduino microprocessor (Uno or 
Micro). This program commanded a vibration via USB-2, 
and received input from existing x-y, scrollwheel and multi-
touch mouse channels and Tilt’s accelerometer.  

EXPERIMENT: DETECTION PERFORMANCE 
We conducted a study to compare usability of our four 
prototypes (representing points in the scrolling input design 
space), as well as the impact of both scrolling method and 
annotation modality on the human viewer’s detection 
performance in the face of imperfect annotation (false 
positives and true positives). In constructing annotation 
modality conditions, we aimed to hold perceptual salience 
constant.  

We hypothesized that:  
1. Haptic+Visual will afford faster detection together. 
2. Annotation modality will not affect error rates. 
3. Wheel and Touch will afford similar accuracy, because 

they both clutch through the images.  
4. Click-&-Drag and Tilt will be fastest in approaching an 

area, but perform poorly in finer adjustments.  
We also sought subjective input that would elucidate 
ergonomic factors, but did not test them directly. 

 
Figure 3: Prototypes. From left: Touch, Tilt, Wheel / Click+Drag 

 

 

Table 4: Annotation Modality study factor 

Visual Dashed green circle around the target (Figure 4), 
visible when the image itself appeared. 

Haptic A 200ms buzz (pager motor) as user approached 
annotated image. The buzz started one image before 
the anomaly image if the user was scrolling rapidly 
(majority of the buzz felt on image), and on the 
image if the user was scrolling slowly. 

Combined Combination of Visual and Haptic 
 

Table 3: Scrolling input mobility design space and study factor 

Type Prototype Name:  Motion description 
Wheel 

scrolling 
Wheel (Baseline): Traditional scrollwheel mouse 
functionality. 

Dragging of 
whole mouse  

Click & Drag (Baseline): Traditional dragging and 
pointing functionality (combinable with Wheel). 

Sliding on 
mouse 
surface 

Touch: Sensing of a finger sliding on a smooth 
surface, as in current mobile touch screens; multi-
touch can map gestures to specialized functions.  

Rocking  Tilt: Maps forward/back rocking to scrolling 
up/down; also uses rate rather than position control  
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Radiology Proxy: Abstracted Task for Lay Subjects 
It was infeasible to access professional radiologists for 
repetitive performance tests, so we created a version of the 
stack-scrolling task in which non-expert performance would 
indicate qualitative, first-pass trends of trained radiologist 
performance at a level which could guide a next round of 
development. From the observation of radiologists it is 
impossible to determine their error rates, but qualitatively 
the scrolling passes performed by lay subjects appear 
similar to radiologists: users scroll at their preferred speed, 
with slow downs on areas of interest. We removed the need 
for radiology knowledge, with visual complexity that could 
be quickly learned; and reduced the task to one of scrolling 
and signal detection to focus our findings on the relative 
roles played by annotation modality and interaction type in 
performance and usability. Validation took two forms: pre-
test expert task assessment; and adjustment of difficulty to 
match lay with published expert performance (see also 
Results).  

With the help of our expert radiologist co-author (~20 years 
in practice, leads a university team) we dissected the 
radiology stack-scrolling task to its most basic element: 
searching for something visually specific among similar 
objects / distractors. The expert confirmed the final task 
abstraction’s suitability for a first lay assessment. We have 
since discussed the validity of the task as a facsimile for 
their work with 2 more radiologists; both felt it was valid 
and sensible to use this type of visual search task with lay 
users to initially predict their own expert performance. 

The task emulated scrolling through a lung CT image stack 
while looking for potentially cancerous nodules (as in Task 
Example 1). In real stacks, lung images exhibit a bronchial 
tree (bronchi tubes feed into smaller “bronchioles”). The 
alveoli sacks at the ends of this tree can look similar to, but 
have slightly different characteristics, than cancerous 
nodules (Figure 1 shows a potential nodule). 

Our more learnable version entailed small greyscale 
rectangles placed throughout a 60-image stack with a 
uniform black field (256x256px, rendered at ~8cm/side on a 
laptop screen; Figure 4). The task was to find the true target 
(a perfect square of 5-10px, medium grey), of which there 
would be exactly one per stack, among 50 distractor noise 
rectangles (sizes randomly chosen between 4-12 px/side 
with aspect ratio 40% larger and smaller than the true 
target, and either lighter or darker grey); then click one of 
four buttons on a numeric keypad, indicating the quadrant 
where it was seen. In pilots, we adjusted task difficulty 
(varying distractor shape, frequency and contrast) to the 
settings described here. These supported a ~10% error rate 
performance. This was slightly better than the 20-30% 
documented for radiologists [16], deemed appropriate given 
a cognitively easier task, and conscientious pilots subjects. 

For tractable analysis, we constrained target stack index to 
four values (20, 30, 40, 50). In pilots (confirmed in study 
results), participants did not appear to learn target locations, 

i.e. they continued to make errors at a uniform rate. The 
order the stacks where presented in was shuffled randomly.   

For each combination of scrolling input and feedback, 
participants saw a learning example plus 20 test stacks. 
These comprised 5 with a highlight at each of the four stack 
indices: four where the true target (perfect square) was 
present and highlighted (16 total), and one where a 
distractor target (aspect ratio 16% smaller / larger than true 
target) was present / highlighted, and the true target was 
located later in stack (4 total). This ratio (80%/20%) 
matches current published CAD performance [10].  

The distractor target (closer to a perfect square than the 
distractor rectangles) always appeared before the true 
target, with an advance randomly selected between image 5 
in the stack, and 5 images before the true target.   
Experiment Design 
A Latin square produced 4 orderings for scrolling input 
(Touch, Tilt, Wheel, Click-&-Drag) and 3 for annotation 
modality (Visual, Haptic, Combined). The latter were 
blocked on scrolling input to minimize device switching, 
for a total of 12 orderings of the 12 condition combinations. 

Metrics were: task completion time, measured from start of 
scrolling to keypad click, and accuracy (did they indicate 
both correct image and correct quadrant of the true target, 
or not). 12 lay participants (1/ordering) were recruited via 
campus posters and emails, and compensated with $15. 

Protocol 
An experiment session took up to 1.5 hours. Participants 
were seated in a quiet room, asked to complete a 
demographic questionnaire, and instructed to complete the 
task quickly and accurately. They then carried out target-
search on 12 sets of 20 image stacks, while listening to 
white noise through noise cancelling headphones to 
mitigate any auditory vibration feedback as the background 
noise at a hospital likely would. 

Between each set of 20 tasks, participants were surveyed on 
their scrolling accuracy, frustration, confidence, and 
attentional needs; how easy it was to notice the annotations, 
and how helpful they were.  Upon completion, they were 
asked to rank their preference of device and annotation.  

 
Figure 4. Study 2: Images from abstracted task. Right image 

shows visual target annotation. 
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RESULTS 
We replaced one subject who did not understand the task. 
9/12 participants had error rates <20%, and 3 in the range of 
30-50%. 5 did not complete the final set (scroll input) due 
to a time restriction of 1.5 hours.  

Task Completion Time 
Completion time exhibited a broad and heavily skewed 
distribution: targets were placed at different distances from 
the start point, and participants varied in the care they took, 
with trials tending to go long if they did not find the square 
in the first pass. Conventional models like ANOVA and 
GLM (general linear modeling) require normality. ANOVA 
can also only treat whether or not they got the trial correct 
as a variable, whereas a Cox model can use this factor to 
censor the data. Further, completion time and accuracy 
were not fully independent since with enough time a correct 
target could always be found in our abstracted task. 

The legitimacy of some trials comes into question if we do 
not censor the times by whether or not the subject found the 
target correctly (censoring is a statistical situation wherein 
only partial information is known about a data item, e.g. 
that up to time x, the user had not completed the task [11]). 
Fast responses where an apathetic participant chose a non-
target image would skew results, but censoring essentially 
removes this data by only taking it as partial information. 

We therefore used a proportional hazards model (Cox 
regression [3, 8]) for completion time, which assumes that 
if given more time users could answer correctly. Non-error 
trials have all information needed, and error trials partial ( 
they did not find it up to a certain time). Thus the model 
censors time by whether or not they got the trial correct: 

Tcomp = P + S + A + Ti + Th + N2 + Th*A + S*A  [Eq. 1] 

where model parameters are Participant, Scrolling input 
condition, Annotation modality condition, Target index,  
Target highlighted, and trial Number.  

The hazard rate from the Cox regression can be plotted as a 
survival curve, which shows the likelihood a task would be 
completed at a certain time (Figure 5). Most tasks are 

completed within 40 seconds, and it is apparent that 
combined annotations (haptic and visual) make it more 
likely that the task is completed earlier.  

The Cox regression delivered the following statistically 
significant results for completion time (p<.05):  
• S: Wheel scrolling was faster than the baseline Click-&-

Drag (Z=2.48, p=0.013), and Tilt was slower than Click-
&-Drag (Z=-2.47, p=0.014). 

• A: Combined annotations were faster than Visual 
(Z=2.59, p=0.0096), and Haptic was slower than Visual 
(Z=-2.82, p=0.0048).  

• Th: For false alarms (false-target highlighted) trials were 
slower (Z=-2.27, p=0.023).  

• Th x A: For false alarms, Combined annotation was 
slower than for true positives (Z=-3.30, p=0.00096). 

Regarding individual variance and task validation, 
• P: Participants varied widely in completion time (Tcomp 

SD: 12913ms). E.g. P10 was faster than P1 (Z=5.29, 
p<0.0001), and P8 slower than P1 (Z=-2.82, p=0.0048).  

• N2: Trial number reaching significance (Z=-5.48, 
p<0.0001) indicates Tcomp fit a t2 distribution: earlier trials 
were slower, middle trials fastest, and later trials slower 
again. This suggests learning followed by boredom. 

• Ti: The shortest target index distances (20) had faster 
trials than the two longest (40; Z=-5.46, p<0.0001) and 
(50: Z=-8.11, p<0.0001). 

Approach analysis: To get a sense of the motion dynamics 
as a function of scrolling method and annotation modality, 
we defined Tapp as the period of time a user proceeded 
forward measured from the trial’s start to a first direction 
reversal. To reduce noise, trajectories shorter than 10 
images were removed from this analysis.  
Analyzed with a GLM, Haptic had slower approaches than 
Visual (t=2.46, p<0.0014). Wheel, Touch and Tilt had 
slower approaches than Click-&-Drag (t=3.88, 5.02, 8.30, 
all p<0.0001), but there was less data for Click-&-Drag 
following short-trajectory removal; we conjecture that its 
motion was jerkier. 

Accuracy 
To analyze trial accuracy (a binomial distribution of 
right/wrong) we used a GLM with the same parameters as 
for Tcomp (Eq. 1).  Significant results (p<.05) are as follows. 
• P:  Participants varied widely in accuracy (average 17% 

error rate, min 2%, max 55%). E.g. P11 had significantly 
fewer errors than P1 (Z=8.90, p<0.0001). 

• N2 (Z=-2.28, p=0.023): there is likely a learning then 
boredom effect (consistently with Tcom).  

Questionnaire Results 
Ten participants preferred Combined annotation modalities; 
one preferred Haptic, and one Visual.  

 
Figure 5. Survival  likelihood (Cox regression) vs. projected 

completion time. Visual, Haptic, and combined. 
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Likert scale responses were analyzed using a proportional 
odds logistic regression, accounting for scale ordering along 
with experiment factors (scrolling input, annotation 
modality). This indicated (p<0.05): 

• Wheel was deemed the most accurate device (Z=-4.79, 
p<0.0001) with Touch the runner-up (Z=-1.97, 
p=0.0493). Users had more confidence in Wheel (Z=-
4.45, p<0.0001) and felt they required less attention 
(Z=3.03, p=0.0025).  

• Wheel was rated the least frustrating (Z=4.79, p<0.0001), 
with Touch 2nd least frustrating (Z= 3.07, p=0.0021).  

• Combined (haptic and visual) annotation was most 
noticeable (Z=3.27, p=0.0011), as well as most helpful 
(Z=2.34 p=0.0191).  

There were generally more positive responses for Wheel in 
comparison to the other scrolling inputs. Combined 
annotation received higher ratings than either alone. 

FOLLOW UP WITH RADIOLOGISTS 
Modified prototype: We combined the best performing 
features found in evaluation, to create a prototype that 
worked as a conventional mouse with the added abilities to 
(a) touch-scroll, and (b) tilt backwards to access rate control 
scrolling (with a switch to control direction). We began 
with a Microsoft Wedge mouse, added a rocking base 
(Polymorph™), and sensed tilt with a potentiometer (an 
accelerometer would confound translation with tilt). An 
Arduino relayed mouse signals, and a tactor was installed 
underneath the touch surface (Figure 6).  
Method: We took the modified prototype to the workplaces 
of 3 radiologists (2 previously interviewed, 1 new), 
demonstrated its movement and haptic feedback (in the 
context of our abstracted test task) and informally discussed 
its potential usefulness with them. 
Highlights: Given existing customizability of PACS setups, 
radiologists reiterated their receptivity to the idea of a 
personalizable mouse. Their preferred speed of scrolling is 
highly personal and varies depending on the type of stack, 
so the rate control could have several preset speeds (e.g., 
controlled via a slider on the side of the mouse). “The goal 
should be to customize the mouse… in a perfect world once, 
and then to not have to fool with it after that” [P1]. 
P2, an emergency radiologist, stated “The way that I look at 
a large data set study is I fly through it once and get a birds 

eye view… I want to exclude any immediately life-
threatening conditions”. Further, in a diagnosis he needed 
to access multiple stacks, and felt the haptic feedback 
would help re-orient him upon switching. He also indicated 
aesthetic appreciation: “Ooh the haptic feedback I love”.  
Sometimes radiologists need to re-read other radiologist’s 
image sets, e.g. with trainees, to ensure quality of care. The 
haptic annotations could help speed this review: “You mark 
up the image in a peer review, and then I go through it to 
check whoevers work, and I can find immediately what they 
were looking at – that is valuable” [P1]. 
P3 noted there might be “a temptation to go really fast”, 
and worried that the haptic cues would encourage this, 
resulting in missing anomalies. However, he further mused 
that it would be useful for very large data sets, such as the 
lungs. He generally felt that “You have a problem and you 
are trying to find a solution to the problem, and here we 
have a potential solution to many problems”. 
Unsurprising was some mention of potential integration 
issues: “Many of our workflows are so refined over the 
years… because we are just used to going through data sets 
in a certain way” [P2].  
DISCUSSION 

Value of Haptic Feedback 
Hyp. 1: Combined (Haptic+Visual) will afford faster 
detection than either alone - Accepted 

Results from our non-expert, abstracted study suggests that 
for a task similar to image-stack scrolling, multimodal 
annotations (combined) are most noticeable, most helpful, 
and improved detection times. Haptic annotation was 
slower than Visual. We can infer performance relative to no 
annotation from the cases where the true target was not 
annotated (distractor target highlighted); having just haptic 
or visual annotations showed no differences in speed, but 
multimodal annotation slowed the user relative to when the 
target was correctly highlighted. Overall, using both types 
of annotation together was still fastest.  

A possible explanation, in addition to simple cuing 
redundancy, is that each modality provided slightly 
different speed-related benefits. Visual annotations told the 
user exactly where in the image the target was; Haptic may 
allow faster motor responses. Combined annotations 
benefited from both.  

The timing of the Haptic annotations here was devised to 
match Visual as closely as possible. However, the haptic 
annotation could be given earlier, allowing the user to slow 
down pre-emptively and search more carefully through the 
next few images. In our abstracted task, the context of the 
perfect square does not matter, but a radiologist might 
tweak the timing of the feedback to help view and 
understand the context of the potential anomaly.  

An important emerging source of annotations is other 
radiologists. Trainees must have their diagnoses checked by 

 
Figure 6. Modified prototype. Images show some of the 
movements /interactions that can be performed with it. 

Health & Community DIS 2014, June 21–25, 2014, Vancouver, BC, Canada

574



a board-certified radiologist, and can be required to provide 
annotations in key images for the 2nd radiologist to review. 
Also, there is widespread pressure within diagnostic 
imaging [25] and medicine as a whole to increase peer 
review activities as a quality assurance measure.     
Effect on Decisions 

Hyp. 2: There will be no effect of annotation modality on 
error rates - Accepted 

Lay participants had the same accuracy for trials annotated 
correctly and incorrectly, as there was no significance 
found for the target highlighted (Th) term. However, they 
made slower detections in trials containing false positives 
(for completion time the Th term did reach significance). 
Annotation modality did not affect the lay users’ ability to 
make a decision, as it did not impact accuracy. Overall, 
having Combined annotation speeds them up and they show 
a preference towards it, in comparison to Visual alone.  

Scrolling Type 
Hyp 3: Wheel and Touch will afford similar accuracy, 
because they both clutch through the images – Partially 
supported  

No device emerged as the most accurate, but subjectively 
Wheel was felt to be the most accurate, with Touch next.  

Hyp. 4: Click-&-Drag and Tilt will be fastest in 
approach, but perform poorly in finer adjustments – 
Partially supported  

Click-&-Drag was fastest for approaching an area. Tilt was 
slowest in task completion time, so appears to be weaker 
for finer adjustments for the implementation we tested; 
however it was also the least familiar to users, and had the 
least refined implementation (the others being minor 
revisions of commercial products). 

The traditional and most familiar (Scroll) supported the 
fastest task completion times by lay users, and was 
preferred. In most metrics, sliding-touch scrolling (Touch) 
was ranked second. However, Click-&-Drag supported 
faster initial approach (even if it was to the wrong area). 
This, along with familiarity, is likely why Scroll and Click-
&-Drag work well together in the radiology environment.  

Combining scrolling input methods 
Radiologists were interested in reducing the repetitive 
movements associated with the mouse that occur often with 
scrolling (e.g. clutching with the mouse wheel). This 
encourages us to continue to refine our Tilt implementation 
and test it following longer learning, as its rate control 
approach while continuing to support other functionality. 
Multi-touch would also allow many more potential 
improvements in radiology image interaction, via the 
mapping of gestures to different tools that could reduce the 
need for modal interaction with PACS workstations. 

Validity of Abstracted Task + Lay Users 
How are our lay subjects like/unlike radiologists? Our lay 
users’ error rates varied wildly, and we would expect 

radiologists to show more homogeneity because of their 
training, and studies indicate consistent error rates of 20-
30% [16]. Our lay users varied more, ranging from less than 
2% error to 55% error (average 17% error rate). We would 
expect professionals to have fewer slower outliers, and less 
inter-person variability.  

We must therefore take care in generalizing to radiologists. 
We saw little effect in error rate, but there may be effects 
for radiologists. Future validation includes a compacted 
study to look at the effect of annotation modality on errors 
for trained radiologists. 

CONCLUSION 
We analyzed radiologists’ work and found a high 
prevalence of scrolling, poorly supported by traditional 
scrolling input devices with negative ergonomic and 
productivity implications that can be expected to grow in 
the future. The radiologists we interviewed were highly 
interested in seeing improvements to their working tools, 
and some had experimented with this on their own. 
Creation and iteration of the various interaction ideas (that 
eventually became the 3 prototypes used in the experiment) 
was central to our discussion with the radiologists. 

In our study comparing the four scrolling input motions, the 
scrollwheel emerged as the fastest (with lay users), and 
confirms our early observation that augmentation of 
established tools should be explored rather than 
replacement. However, novel input methods (e.g. a tilt or 
rocking motion associated with rate control scrolling) were 
disadvantaged by their newness and less optimized 
implementation. Because the scrollwheel has known 
ergonomic issues from excessive repetitive movement, 
alternate methods still need to be explored.  

In the emerging practice of incorporating annotations (from 
CAD or other radiologists) into radiologists’ workflow, we 
have shown that multimodal cues are a promising approach, 
showing task speedup without error degradation, for a task 
abstracted to non-experts. Radiologists are heavily visually 
loaded, and may benefit from information provided through 
a less loaded modality, even when redundant.  

Because of the many factors (economic, training) making 
the radiologist work environment highly change-resistant, 
introduction of new input devices must be undertaken with 
care. Our participatory approach, which revealed 
enthusiasm for change, seems a promising avenue for this.  

Future Work 
In addition to addressing the improvements and caveats 
mentioned throughout this paper, some development 
directions have emerged. 

In our study we required our lay users to use each scrolling 
input type separately. A more realistic scenario is for the 
user to access them all in a seamless manner: some methods 
are better for scanning the stack, others for fine 
adjustments, and yet others for other GUI uses. A next step 
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will entail further integrated prototype refinement in 
collaboration with expert users, followed by its use in a 
similar task, in order to compare its performance to the 
individual scrolling types.  

The effectiveness of the haptic feedback could be increased 
by personalization, to accommodate individual differences 
in reaction times. One could create a program that logs the 
reaction to the haptic cue, and adjusts the timing of the 
feedback based on this. Other types of haptic cues might 
improve attentionally on the simple buzz we used, such as a 
vibration fading in upon approaching a region of interest.  
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