
25i n t e r a c t i o n s . . . j a n u a r y + f e b r u a r y 2 0 0 2

JEFF JOHNSON AND AUSTIN HENDERSON design

Conceptual Models: Begin by Designing
What to Design
Suppose you are designing a software product, electronic appliance, or Web service. You’ve gathered

functional requirements from Marketing and from prospective customers and users. You’ve done a task-

analysis and created user profiles. What’s your next step?

For many designers, especially those new to user-
interface design, the next step is to sketch the control
panels and dialog boxes of their product or the pages of
their Web service. Such initial sketches are usually high-
level and low-fidelity—showing only gross layout and
organization.

If you begin your design phase by sketching,
we believe you’ve missed a step. Sketching amounts
to starting to design how the system presents itself
to users. It is better to start by designing what the
system is to them. That is, by designing a conceptual
model.

Let’s consider examples of conceptual models.

Assume you are designing:

✱ a Web site. Is the site
a) a collection of linked pages, or
b) a hierarchy of pages with some crosslinks?

✱ breadcrumbs for Web site navigation. Do they
show

a) the history of pages you have gone through
to arrive here, or

b) the place of this page in the hierarchy of
pages?

✱ support for discussion grouped around topics. Is
the structure

© Technology Abstracts/EyeWire, Inc.

a) a set of threaded lists, one for each
subject, or

b) a set of postings each with poten -
tially related subjects?

✱ an application for creating newsletters.
Is a newsletter

a) a list of items, or
b) a set of pages each with layout of

items?
✱ A platform for creating questionnaires.

Is the questionnaire
a) a linear list of questions, or
b) a branching tree of questions?

These decisions matter. Depending on how
you choose, users will think of things differ-
ently, the objects will be different, the opera-
tions users can do on them will be different,
and how users work will be different. If you
try to avoid choosing, to have it both ways
(and, of course, most designs have more than
two ways of going), users will get a confused
understanding of the system and confused
direction on how to think about their work.
Not choosing is tempting, because these deci-
sions are almost always difficult to make:
Usually they involve tradeoffs between sim-
plicity and power (tough call!). In addition,
they always depend on what the user is doing,
which means being clear about the users tasks.
But in the end some sort of decision on the
conceptual model will be made, even if only as
a side-effect (often bent and uncertain) out of
the rest of the design process.

Tough decisions, but essential, as we see it.
And better done right up front when it is not
made even more difficult by being encum-
bered with lots of dependent details. Our
position: Get the bone structure right, then
flesh it out.

By carefully crafting an explicit conceptual
model focused squarely on the target task-
domain, and then, and only then, designing a
user interface from that, the resulting product
or service will be simpler, more coherent, and
easier to learn. In contrast, if you jump
straight into designing the user interface, you
are much more likely to develop a product or
service that seems arbitrary, incoherent, and
overly complex, not to mention heavily laden

26

with computer-isms. (For an example, see
Sidebar 1: A Web App Without A Task-Based
Conceptual Model.)

Designers with strong backgrounds in
human-computer interaction and user-inter-
face design are probably well aware of the
value of conceptual models. However, our ex-
perience with our clients indicates that con-
ceptual models of this sort are almost
completely unknown outside of the HCI
community, especially among Web designers
and software programmers.

What a Conceptual Model Is
A conceptual model is a high-level description
of how a system is organized and operates. It
specifies and describes:

✱ the major design metaphors and
analogies employed in the design, if
any.

✱ the concepts the system exposes to
users, including the task-domain data-
objects users create and manipulate,
their attributes, and the operations that
can be performed on them.

✱ the relationships between these concepts.
✱ the mappings between the concepts

and the task-domain the system is
designed to support.

In using an interactive system (electronic
appliance, software program, or Web service),
reading its documentation, and talking with
other people who use it, users construct a
model in their minds of the system and how it
works. This allows them to predict its
behavior and generalize what they learn to
new situations. If the designers take the
trouble to design and refine a conceptual
model for the system before they design a user
interface for it, users will be able to more
quickly “figure it out.” Furthermore, the
model they “figure out” will be more like the
one the designers intended. A conceptual
model of an interactive system is therefore:

✱ an idealized view of the how the system
works—the model designers hope users
will internalize;

Jeff Johnson
UI Wizards, Inc.

i n t e r a c t i o n s . . . j a n u a r y + f e b r u a r y 2 0 0 2

i n t e r a c t i o n s . . . j a n u a r y + f e b r u a r y 2 0 0 2 27

✱ the ontological structure of the system:
the objects, their relationships, and
control structures;

✱ the mechanism by which users accom-
plish the tasks the system is intended
to support.

For example, suppose you are designing an
online library catalog. The conceptual model
might include:

✱ metaphors and analogies: e.g., the
information is organized as in a phys-
ical card-catalogue.

✱ concepts: e.g., item (with attributes:
title, ISBN, status; with actions: check-
out, check-in, reserve), subtypes of item
(e.g., book, periodical issue, LP, video),
periodical volume, user account (with
attributes: name, items checked out),
librarian;

✱ relationships: e.g., a book is one type
of item, periodical volumes contain
issues;

✱ mappings: e.g., each item in the
system corresponds to a physical item
in the library;

For an example of a conceptual model for
a different task-domain, see Sidebar 2:
Managing Checking Accounts: Objects,
Attributes, Actions.

Simple: A conceptual model should be as
simple as possible while providing the required
functionality. An important guideline for
designing a conceptual model is: “Less is
more.” If, for example, you’re designing a
search facility for the Web, do your intended
users really need full boolean search capability?
If not—if a simpler search mechanism covers
the user’s needs—don’t burden the design with
the more complex capability. Similarly, if
you’re designing a route-following application,
is “turn NNE” needed, or only “turn right”1.
And beware, simple ain’t simple: it often takes
a lot of thinking (and testing) to deciding

which model will be simplest!
Task-Focused: The more direct the map-

ping between the system’s operation and the
task-domain it serves, the greater the chances
that the designers’ target conceptual model
will be correctly reproduced and adopted by
the users (Norman, 1986).

For example:
You are designing a software product for

creating and managing organization charts. Is
an organization chart

a) a collection of boxes, box labels, box
layout, connector lines, and attrib-
utes thereof, or

b) a collection of organizations, sub-

1 If this example bothers you because it’s comparing apples and oranges—different ways of thinking
about directions, then good! you are thinking about conceptual models.

A W e b A p p W i t h o u t A Ta s k - B a s e d
C o n c e p t u a l M o d e l

A large database company has a Web site that its external consul-

tants use to log hours worked. Is its user interface based on a

task-focused conceptual model? You be the judge:

✶ To log a week’s worth of hours, consultants click on

“Create Record.” Why “Create Record,” rather than, say

“Log Hours” or “Log New Week”? Because the information

is being stored in a database, so a new database record

must be created in which to store the new data.

✶ If a user succeeds in logging a week’s hours, the system

displays the message: “Success: new row inserted.” Huh?

Not only does this message seem unrelated to logging

hours, it seems unrelated even to the software’s own term

for the function: “Create Record.”

✶ If a consultant forgets that she already logged her hours

for a particular week and tries to log the same week

again, the system displays the error message: “ORA-00001:

unique constraint (CLEATS.PA_REPORT_HEADERS_U!) vio-

lated,” informing the user that some internal software

constraint has been violated rather than that, e.g., “Hours

for that week have already been logged.”

✶ The function for changing one’s password accepts any

character sequence as a new password, even though the

Login function won’t accept non-numeric passwords. Thus,

it’s possible to set your password to a string that the Login

function flags as an entry error. You then cannot login.

28 i n t e r a c t i o n s . . . j a n u a r y + f e b r u a r y 2 0 0 2

organizations, employees, and attrib-
utes thereof?

Model “b” maps more directly to the users’
task-domain, and so will be easier for the
users—who presumably already understand
organizations—to master. In contrast, Model
“a” focuses on the graphic appearance of an
organization chart, rather than on its function.

What a Conceptual Model Is Not
The conceptual model of an interactive
system is not the user interface. It is not about
how the software looks or how it feels. It does
not mention keystrokes and mouse-actions,
screen graphics and layout, commands, navi-
gation schemes, dialog boxes, controls, data
presentation, or error messages. It does not say
whether the software is operated through a
GUI on a personal computer or by voice-com-
mands over a telephone. It describes only
what people can do with the system and what
concepts they need to understand to operate
it. It refers only to task-domain objects, attrib-
utes, and actions.

The conceptual model is not the users’
mental model of the system. Users’ mental
models of systems are not accessible to
designers in any objective sense. Designers
should not waste time trying to determine
what the users’ “mental models” of the
system are (Nardi, 1993). Different users are
likely to have different mental models of a
given interactive system anyway. Conceptual
models are more usefully thought of as a
design-tool—a way for designers to
straighten out their thinking before they start
laying out widgets. It is the designers’
responsibility to devise a conceptual model
that makes sense to users based on users’
understanding of the task domain. In other
words, a conceptual model may be the basis
for users’ mental models of the system, but
that is not its primary purpose.

The conceptual models are not use cases

(also known as task-level scenarios). Use cases
are stories about the domain tasks that users
will have to carry out in their work. They are
supposed to be expressed in a system-neutral
way, so as not to specify the design of the
system. Use cases emerge from study and
analysis of the task domain—through inter-
views, ethnographies, focus groups, contextual
inquiry, and other methods. They can either
be input to the design of the conceptual
model or they can emerge from it; therefore,
they are often included in documents about
conceptual models. However, a set of use cases
is not a conceptual model: use cases focus on
tasks; the conceptual model focuses on the
system.

Finally, a conceptual model is not an imple-
mentation architecture. An implementation
architecture contains concepts—objects,
attributes, actions, and control structures—
that are required to implement the system.
Some of these concepts in the implementation
architecture may correspond to concepts in the
conceptual model (e.g., a BankAccount class
vs. the concept of a bank account), but if so,
one is a technical object while the other is an
abstract construct. Of course, an implementa-
tion architecture will also include implementa-
tion objects that are of no concern to users
(e.g., streams to the file system), which should
have no place in the conceptual model2.

Object/Actions Analysis
An important component of a conceptual
model is an Objects/Actions analysis: an enu-
meration of all the concepts in the model—all
the user-understood objects in the system,
user-understood attributes of those objects,
and the actions that users can perform on each
of those objects (Johnson et. al., 1989; Card,
1996). The Objects/Actions analysis, there-
fore, is a declaration of the concepts that are
exposed to users. Follow this rule: “If it isn’t
in the conceptual model, the system should
not require users to be aware of it.”

2 Sometimes this distinction is made by saying that only “user-visible” objects and relations should be
in the concepts of the conceptual model. However, this can be confusing, because it tends to direct our
thinking toward presentations—how things look—which as we have said is the subject matter of the
interface, not the conceptual model. We find “user-understandable” to be a safer term as it directs
attention to the users’ understanding independent of how things look.

29i n t e r a c t i o n s . . . j a n u a r y + f e b r u a r y 2 0 0 2

Because computer-based systems often
provide new capabilities, concepts not found
in the task domain—especially a pre-comput-
erized one—often creep into the conceptual
model. For example, hard-copy documents in
a physical filing system can only be organized
one way, but files in an electronic document
system can easily be organized in multiple
ways simultaneously.

However, each new concept comes at a
high cost, for two reasons:

✱ It adds a concept that users who knows
the task domain will not recognize and
therefore must learn.

✱ It potentially interacts with every
other concept in the system. As con-
cepts are added to a system, the com-
plexity of the system rises not linearly,
but exponentially!

Therefore, additional concepts should be
strongly resisted, and admitted into the con-
ceptual design only when they provide high
benefit and their cost can be minimized
through good user-interface design (see the
discussion of Quicken™ in Sidebar 2:
Managing Checking Accounts: Objects,
Attributes, Actions). Remember: Less is more!

Relationships Between Concepts
Enumerating the objects and actions of the
task-domain allows designers to notice actions
that are shared among objects. Designers can
then use the same user interface for actions
across a variety of objects. For example, con-
sider a drawing application that allows users to
manipulate both rectangles and ellipses. If cre-
ation works the same way for both types of
objects, when a user knows how to create a
rectangle and wants to create an oval, they
already know how to do it. Similarly, if users
can constrain rectangles to be squares they
should also be able to constrain ellipses to be
circles. This makes for a conceptual model
that has fewer distinct concepts, is simpler and
more coherent, and is more easily mastered.

If objects in a task-domain share actions,
they can probably be organized in a specializa-
tion or type hierarchy, in which certain con-

ceptual objects are specializations of others. If
so, making that hierarchy explicit in the con-
ceptual model may help users comprehend it
more easily. While only programmers under-
stand object-oriented analysis, most users can
understand the idea of specialization. For
example, a checking account is a type of bank
account, and a book is one type of product or
item a store might sell.

Depending on the application, objects may
also be related by a containment hierarchy, in
which some objects can contain other objects.
For example, an email folder contains email
messages, and an organization can contain
employees.

Finally, concepts in a task-domain are
related to each other in importance. Some con-
cepts are encountered by users more fre-
quently than others. For example, closing a
checking account is an infrequent operation
compared to, say, entering a transaction into
an account. The relative importance can be
used to focus the design: It is more important
to make frequent operations easy, even at the
expense of less frequent ones.

From Conceptual Model to Completed
Project
Developing a conceptual model as the first
design step provides several benefits in later
steps:

Lexicon. Once the development team
assigns names to the objects, actions, and
attributes enumerated in the conceptual
model, they have a lexicon of terms to be used
in the application and its documentation. As
the interface is developed, the software coded,
and the documentation written, the lexicon
can be consulted to ensure that terms are used
consistently throughout.

Although the entire team develops the lex-
icon, it is best managed and enforced by the
team’s technical writer. This lexicon-man-
ager—whoever gets the job—should con-
stantly be on the lookout for inconsistencies
in what things are called. For example: “Yo,
Bill. We called this thing a ‘cell’ in this dialog
box, but we call it a ‘container’ in this other
dialog box. Our official name for them is
‘cells,’ so we need to fix that inconsistency.”

30 i n t e r a c t i o n s . . . j a n u a r y + f e b r u a r y 2 0 0 2

Software developed without a lexicon often
suffers from two common user interface
“bloopers”: 1) multiple terms for a given con-
cept, and 2) the same term for multiple dis-
tinct concepts (Johnson, 2000).

It is also the lexicon-manager’s role to be on
the lookout for user-visible concepts in the
interface, software or documentation that
aren’t in the lexicon, and to resist them. For
example: “Hey Sue, I see that this window
refers to a ‘hyper-connector.’ That isn’t in our
conceptual model or lexicon. Is it just the
wrong name for something we already have in
our conceptual model, or is it something new?
If it’s something new, can we get rid of it, or
do we really, really need it?”

Task scenarios or use-cases. A conceptual
model allows the development team to write
scenarios of the product in use, at a level of
description that matches the target task-
domain. Such scenarios are often called use-
cases. They are useful in checking the
soundness of the design. They can be used in

product documentation, in product func-
tional reviews, and as scripts for usability tests.
They also provide the basis for more detailed
scenarios written at the level-of-detail of the
eventual interface design.

Once a conceptual model has been crafted,
one can write use-cases or task-scenarios
depicting people using the application, using
only terminology from the conceptual model.
In the case of the checkbook application, for
example, it should be possible to write sce-
narios such as:

John uses the program to check his

checking account balance. He then

deposits a check in his account and

transfers funds into the account from

his savings account.

Note that this scenario refers to task-
domain objects and actions only, not to
specifics of any user interface. The scenario
does not say whether John is interacting with

M a n a g i n g C h e c k i n g A c c o u n t s : O b j e c t s , A t t r i b u t e s , A c t i o n s

If we were designing software for the task-domain of managing checking accounts, the object/actions analysis

would, if properly task-based, include objects like transaction, check, and account. It would exclude non-task-

related objects like buffer, dialog box, mode, database, table, and string.

Regarding attributes, it would make sense in a task-based conceptual model for checks to have a name, a

number, and a date; for accounts to have an owner and a balance; and for transactions to have an amount and a

date. However, a conceptual model in which transactions had a byte-size or an export encoding as user-visible

attributes would not be task-focused and would detract from the learnability and usability of the software, no

matter how much effort went into designing the user interface.

Finally, a task-based conceptual model would include actions like writing and voiding checks, depositing and

withdrawing funds, and balancing accounts, while excluding non-task-related actions like clicking buttons, loading

databases, editing table rows, flushing buffers, and switching modes.

A checking account management application probably has to support recurring transactions, such as paying the

electric bill each month. Therefore, it may seem necessary to include objects like transaction templates and actions

for defining and managing templates.

But consider how repeating transactions are handled in Quicken™, a checkbook management product from Intuit.

Quicken’s designers recognized that entering recurring transactions should be very easy. The designers could have

fulfilled this need by including an explicit template-management facility, with commands like “Define Template”

and “Use Template.” Wisely, they didn’t do that. It would have added greatly to Quicken’s overall complexity.

Instead, they allowed users to simply record a transaction as if it were a one-time event, then tell Quicken they

want to reuse it. Quicken creates a template from the transaction (based on domain-specific rules) and puts it into a

list. Users simply click on a listed transaction to reuse it. In this way, the designers of Quicken added the function-

ality of transaction templates without the excess conceptual baggage that many software applications that offer

templates have.

31i n t e r a c t i o n s . . . j a n u a r y + f e b r u a r y 2 0 0 2

a GUI on a personal computer or a voice-con-
trolled interface over a telephone.

User-interface. A conceptual model gives
the designer a clear target for what the inter-
face has to deliver to the user: The look and
feel of the objects and actions have to be cre-
ated, the relationships embodied in the
design. The conceptual model then offers the
basis for tests of how well the user interface
works: Can the users manipulate the objects
through their representations as the designer
intended. (Note: It is tempting to think that
the user can tell you about the conceptual
model of the system that they have formed in
these tests. Resist it! That is setting the bar
way too high, and for no reason. It is not at all
necessary for the successful use of most sys-
tems for users either to have the conceptual
model “right,” or to be able to talk clearly
about it. Doing does not require talking!)

The user interface design translates the
abstract concepts of the conceptual model
into concrete presentations, controls, and
user-actions. The user interface should be
designed after the conceptual model has been
designed. Task-scenarios can then be rewritten
at the level of the user-interface design, for
example:

John double-clicks on the icon for his

account to open it. A separate window

opens showing the current balance. He

then clicks in the blank entry field below

the last recorded entry and enters the

name and amount of a check he recently

received.

Implementation. Readers who are pro-
grammers will have noticed the similarity
between the object/action analysis described
here and the object-oriented analysis that is a
common early step in software engineering.
Although object/action analysis is restricted to
user-understood concepts while object-oriented
analysis is not, having done an object/actions
analysis provides a first cut at the object-ori-
ented analysis. Therefore, developing a con-
ceptual model is not a simple added cost for a
project; it produces outputs that save costs in
the software development stage.

Documentation. A conceptual model pro-
vides the documentation team with the mate-
rial that they will have to provide to the user
to help with learning the system (help mate-
rial, documentation). A clearly defined con-
ceptual model is a good place to start, and
should be coupled at all points with the
descriptions of tasks and interface actions.

Design process. Because almost everyone
on the development team is orienting to the
conceptual model, the conceptual model can
also be a central coordination point for mem-
bers of the team as they design and develop
the system.

The centrality of the conceptual model and
its potential role in orchestrating the design
process has one very strong implication for
design activities and their relationship with
the conceptual model: Unilateral additions of
concepts to the conceptual model by any team
member is not allowed.

For example, if a programmer thinks a new
concept needs to be added to the software, she
must first persuade the team to add the con-
cept to the conceptual model; only then
should it appear in the software. Or again, if a
documenter finds that they have to introduce
an additional concept to explain the system,
that change must be reflected first in the con-
ceptual model (with the whole team’s agree-
ment), and then it will appear in the
documentation.

The process will usually not be linear. As
design proceeds from conceptual model to
user interface to implementation, it is most
likely that these downstream designs will
reveal problems in the conceptual model. (It is
tough to get it right the first, or even the fifth
time!) Early usability testing can, and should,
be designed to accelerate this process. Low
fidelity, quick prototypes can be focused on
the important parts of, and questions in, the
conceptual model. Lightweight usability
testing can thus evaluate the conceptual
model as well as the UI design.

If testing exposes problems in the concep-
tual model, go back and change it. Resist the
temptation to treat the conceptual model as
“dead” after an initial UI has been designed
from it. If you don’t keep the conceptual

DESIGN COLUMN EDITORS

Kate Ehrlich

Viant

89 South St, 2nd Floor

Boston MA 02111

(617) 531-3700

kehrlich@viant.com

Austin Henderson

Rivendel Consulting &

Design, Inc.

P.O. Box 334

8115 La Honda Rd.

(for courier services)

La Honda, CA 94020 USA

+1-650-747-9201

fax: +1-650-747-0467

henderson@rivcons.com

www.rivcons.com

32 i n t e r a c t i o n s . . . j a n u a r y + f e b r u a r y 2 0 0 2

PERMISSION TO MAKE DIGITAL OR

HARD COPIES OF ALL OR PART OF THIS

WORK FOR PERSONAL OR CLASSROOM

USE IS GRANTED WITHOUT FEE

PROVIDED THAT COPIES ARE NOT

MADE OR DISTRIBUTED FOR PROFIT OR

COMMERCIAL ADVANTAGE AND THAT

COPIES BEAR THIS NOTICE AND THE

FULL CITATION ON THE FIRST PAGE.

TO COPY OTHERWISE, TO REPUBLISH,

TO POST ON SERVERS OR TO REDIS-

TRIBUTE TO LISTS, REQUIRES PRIOR

SPECIFIC PERMISSION AND/OR A FEE.

© ACM 1072-5220/02/0100 $5.00

model current as you improve the design, you
will regret it in the end, when you have no
single coherent high-level description on
which to base user documentation, training,
or later system enhancements.

Of course, changing the conceptual
model is painful: it affects the user interface,
the documentation, and the implementa-
tion. The entire team is affected. But the
conceptual model is the single most impor-
tant part of your design. Therefore, it pays to
make it as simple and task-oriented as you
can, then do whatever you need to do to rec-
oncile the rest of the design with it.
Otherwise, your poor users will have little
chance of understanding the user interface,
because it will be based on a muddled con-
ceptual model.

Conclusion
Good user interfaces start with clean, simple,
task-oriented conceptual models. The con-
ceptual model is the bones of the design. One
nice thing about this is that the conceptual
model is much smaller than the whole design.
It is something that can be held in mind and
worked on. Get the conceptual model in
hand before adding all the complexity of
everything else.

Once you have the conceptual design, all
the other design and implementation activi-
ties can and should be grounded in it, feeding

it further (task scenarios, evaluation), building
on it (user interface, lexicon, implementation,
documentation, evaluation). Because the con-
ceptual model is so central, it is important to
ensure that everyone agrees on it. In addition,
because changes that affect the conceptual
model affect everyone, all changes must be
made jointly. The conceptual model is the
central point of discussion and site of debate.

So at the outset, and throughout, let the
sketching follow the modeling. Before you
design, design what you are designing: Design
a conceptual model.

References
1. Card, S. “Pioneers and Settlers: Methods Used in

Successful User Interface Design”, in M. Rudisill, C.

Lewis, P. Polson, T. McKay (eds.), Human-Computer

Interface Design: Success Cases, Emerging Methods, Real-

World Context, Morgan Kaufmann, 1996.

2. Johnson, J., Roberts, T., et. al. “The Xerox Star: A

Retrospective”, IEEE Computer, September.

Johnson, J. (2000). GUI Bloopers: Don’ts and Dos for

Software Developers and Web Designers, Morgan

Kaufmann, 1989.

3. Nardi, B. and Zarmer, C. Beyond models and

metaphors: Visual formalisms in user interface design.

Journal of Visual Languages and Computing 4, 5-33.

(1993)

4. Norman, D.A. “Cognitive Engineering,” in D.

Norman and S.W. Draper (eds.), User-Centered System

Design, Lawrence Erlbaum Associates, 1986.

