
Journal of Machine Learning Research 8 (2007) 653-692 Submitted 9/05; Revised 9/06; Published 3/07

Relational Dependency Networks

Jennifer Neville NEVILLE@CS.PURDUE.EDU

Departments of Computer Science and Statistics
Purdue University
West Lafayette, IN 47907-2107, USA

David Jensen JENSEN@CS.UMASS.EDU

Department of Computer Science
University of Massachusetts Amherst
Amherst, MA 01003-4610, USA

Editor: Max Chickering

Abstract

Recent work on graphical models for relational data has demonstrated significant improvements in
classification and inference when models represent the dependencies among instances. Despite its
use in conventional statistical models, the assumption of instance independence is contradicted by
most relational data sets. For example, in citation data there are dependencies among the topics of a
paper’s references, and in genomic data there are dependencies among the functions of interacting
proteins. In this paper, we present relational dependency networks (RDNs), graphical models that
are capable of expressing and reasoning with such dependencies in a relational setting. We discuss
RDNs in the context of relational Bayes networks and relational Markov networks and outline the
relative strengths of RDNs—namely, the ability to represent cyclic dependencies, simple methods
for parameter estimation, and efficient structure learning techniques. The strengths of RDNs are
due to the use of pseudolikelihood learning techniques, which estimate an efficient approximation
of the full joint distribution. We present learned RDNs for a number of real-world data sets and eval-
uate the models in a prediction context, showing that RDNs identify and exploit cyclic relational
dependencies to achieve significant performance gains over conventional conditional models. In
addition, we use synthetic data to explore model performance under various relational data char-
acteristics, showing that RDN learning and inference techniques are accurate over a wide range of
conditions.

Keywords: relational learning, probabilistic relational models, knowledge discovery, graphical
models, dependency networks, pseudolikelihood estimation

1. Introduction

Many data sets routinely captured by organizations are relational in nature, yet until recently most
machine learning research focused on “flattened” propositional data. Instances in propositional data
record the characteristics of homogeneous and statistically independent objects; instances in rela-
tional data record the characteristics of heterogeneous objects and the relations among those objects.
Examples of relational data include citation graphs, the World Wide Web, genomic structures, fraud
detection data, epidemiology data, and data on interrelated people, places, and events extracted from
text documents.

c©2007 Jennifer Neville and David Jensen.

NEVILLE AND JENSEN

The presence of autocorrelation provides a strong motivation for using relational techniques for
learning and inference. Autocorrelation is a statistical dependency between the values of the same
variable on related entities and is a nearly ubiquitous characteristic of relational data sets (Jensen
and Neville, 2002). For example, hyperlinked web pages are more likely to share the same topic
than randomly selected pages. More formally, we define relational autocorrelation with respect to
an attributed graph G = (V,E), where each node v ∈ V represents an object and each edge e ∈ E
represents a binary relation. Autocorrelation is measured for a set of instance pairs PR related
through paths of length l in a set of edges ER: PR = {(vi,v j) : eik1 ,ek1k2 , ...,ekl j ∈ ER}, where ER =
{ei j} ⊆ E. It is the correlation between the values of a variable X on the instance pairs (vi.x,v j.x)
such that (vi,v j) ∈ PR. Recent analyses of relational data sets have reported autocorrelation in the
following variables:

• Topics of hyperlinked web pages (Chakrabarti et al., 1998; Taskar et al., 2002),

• Industry categorization of corporations that share board members (Neville and Jensen, 2000),

• Fraud status of cellular customers who call common numbers (Fawcett and Provost, 1997;
Cortes et al., 2001),

• Topics of coreferent scientific papers (Taskar et al., 2001; Neville and Jensen, 2003),

• Functions of colocated proteins in a cell (Neville and Jensen, 2002),

• Box-office receipts of movies made by the same studio (Jensen and Neville, 2002),

• Industry categorization of corporations that co-occur in news stories (Bernstein et al., 2003),

• Tuberculosis infection among people in close contact (Getoor et al., 2001), and

• Product/service adoption among customers in close communication (Domingos and Richard-
son, 2001; Hill et al., 2006).

When relational data exhibit autocorrelation there is a unique opportunity to improve model
performance because inferences about one object can inform inferences about related objects. In-
deed, recent work in relational domains has shown that collective inference over an entire data set
results in more accurate predictions than conditional inference for each instance independently (e.g.,
Chakrabarti et al., 1998; Neville and Jensen, 2000; Lu and Getoor, 2003), and that the gains over
conditional models increase as autocorrelation increases (Jensen et al., 2004).

Joint relational models are able to exploit autocorrelation by estimating a joint probability distri-
bution over an entire relational data set and collectively inferring the labels of related instances. Re-
cent research has produced several novel types of graphical models for estimating joint probability
distributions for relational data that consist of non-independent and heterogeneous instances (e.g.,
Getoor et al., 2001; Taskar et al., 2002). We will refer to these models as probabilistic relational
models (PRMs).1 PRMs extend traditional graphical models such as Bayesian networks to relational

1. Several previous papers (e.g., Friedman et al., 1999; Getoor et al., 2001) use the term probabilistic relational model
to refer to a specific model that is now often called a relational Bayesian network [Koller, personal communication].
In this paper, we use PRM in its more recent and general sense.

654

RELATIONAL DEPENDENCY NETWORKS

domains, removing the assumption of independent and identically distributed instances that under-
lies conventional learning techniques.2 PRMs have been successfully evaluated in several domains,
including the World Wide Web, genomic data, and scientific literature.

Directed PRMs, such as relational Bayes networks3 (RBNs) (Getoor et al., 2001), can model au-
tocorrelation dependencies if they are structured in a manner that respects the acyclicity constraint
of the model. While domain knowledge can sometimes be used to structure the autocorrelation
dependencies in an acyclic manner, often an acyclic ordering is unknown or does not exist. For ex-
ample, in genetic pedigree analysis there is autocorrelation among the genes of relatives (Lauritzen
and Sheehan, 2003). In this domain, the casual relationship is from ancestor to descendent so we
can use the temporal parent-child relationship to structure the dependencies in an acyclic manner
(i.e., parents’ genes will never be influenced by the genes of their children). However, given a set
of hyperlinked web pages, there is little information to use to determine the causal direction of the
dependency between their topics. In this case, we can only represent the autocorrelation between
two web pages as an undirected correlation. The acyclicity constraint of directed PRMs precludes
the learning of arbitrary autocorrelation dependencies and thus severely limits the applicability of
these models in relational domains.4

Undirected PRMs, such as relational Markov networks (RMNs) (Taskar et al., 2002), can rep-
resent and reason with arbitrary forms of autocorrelation. However, research on these models has
focused primarily on parameter estimation and inference procedures. Current implementations of
RMNs do not select features—model structure must be pre-specified by the user. While, in prin-
ciple, it is possible for RMN techniques to learn cyclic autocorrelation dependencies, inefficient
parameter estimation makes this difficult in practice. Because parameter estimation requires multi-
ple rounds of inference over the entire data set, it is impractical to incorporate it as a subcomponent
of feature selection. Recent work on conditional random fields for sequence analysis includes a
feature selection algorithm (McCallum, 2003) that could be extended for RMNs. However, the
algorithm abandons estimation of the full joint distribution and uses pseudolikelihood estimation,
which makes the approach tractable but removes some of the advantages of reasoning with the full
joint distribution.

In this paper, we outline relational dependency networks (RDNs),5 an extension of dependency
networks (Heckerman et al., 2000) for relational data. RDNs can represent and reason with the
cyclic dependencies required to express and exploit autocorrelation during collective inference.
In this regard, they share certain advantages of RMNs and other undirected models of relational
data (Chakrabarti et al., 1998; Domingos and Richardson, 2001; Richardson and Domingos, 2006).
To our knowledge, RDNs are the first PRM capable of learning cyclic autocorrelation dependen-
cies. RDNs also offer a relatively simple method for structure learning and parameter estimation,
which results in models that are easier to understand and interpret. In this regard, they share cer-
tain advantages of RBNs and other directed models (Sanghai et al., 2003; Heckerman et al., 2004).

2. Another class of joint models extend conventional logic programming models to support probabilistic reasoning in
first-order logic environments (Kersting and Raedt, 2002; Richardson and Domingos, 2006). We refer to these models
as probabilistic logic models (PLMs). See Section 5.2 for more detail.

3. We use the term relational Bayesian network to refer to Bayesian networks that have been upgraded to model re-
lational databases. The term has also been used by Jaeger (1997) to refer to Bayesian networks where the nodes
correspond to relations and their values represent possible interpretations of those relations in a specific domain.

4. The limitation is due to the PRM modeling approach (see Section 3.1), which ties parameters across items of the same
type and can produce cycles in the rolled out inference graph. This issue is discussed in more detail in Section 5.1.

5. This paper continues our previous work on RDNs (Neville and Jensen, 2004).

655

NEVILLE AND JENSEN

The primary distinction between RDNs and other existing PRMs is that RDNs are an approximate
model. RDNs approximate the full joint distribution and thus are not guaranteed to specify a con-
sistent probability distribution. The quality of the approximation will be determined by the data
available for learning—if the models are learned from large data sets, and combined with Monte
Carlo inference techniques, the approximation should be sufficiently accurate.

We start by reviewing the details of dependency networks for propositional data. Then we
describe the general characteristics of PRMs and outline the specifics of RDN learning and inference
procedures. We evaluate RDN learning and inference on synthetic data sets, showing that RDN
learning is accurate for large to moderate-sized data sets and that RDN inference is comparable,
or superior, to RMN inference over a range of data conditions. In addition, we evaluate RDNs on
five real-world data sets, presenting learned RDNs for subjective evaluation. Of particular note,
all the real-world data sets exhibit multiple autocorrelation dependencies that were automatically
discovered by the RDN learning algorithm. We evaluate the learned models in a prediction context,
where only a single attribute is unobserved, and show that the models outperform conventional
conditional models on all five tasks. Finally, we review related work and conclude with a discussion
of future directions.

2. Dependency Networks

Graphical models represent a joint distribution over a set of variables. The primary distinction be-
tween Bayesian networks, Markov networks, and dependency networks (DNs) is that dependency
networks are an approximate representation. DNs approximate the joint distribution with a set of
conditional probability distributions (CPDs) that are learned independently. This approach to learn-
ing results in significant efficiency gains over exact models. However, because the CPDs are learned
independently, DNs are not guaranteed to specify a consistent6 joint distribution, where each CPD
can be derived from the joint distribution using the rules of probability. This limits the applicability
of exact inference techniques. In addition, the correlational DN representation precludes DNs from
being used to infer causal relationships. Nevertheless, DNs can encode predictive relationships (i.e.,
dependence and independence) and Gibbs sampling inference techniques (e.g., Neal, 1993) can be
used to recover a full joint distribution, regardless of the consistency of the local CPDs. We begin
by reviewing traditional graphical models and then outline the details of dependency networks in
this context.

Consider the set of variables X = (X1, ...,Xn) over which we would like to model the joint
distribution p(x) = p(x1, ...,xn). We use upper case letters to refer to random variables and lower
case letters to refer to an assignment of values to the variables.

A Bayesian network for X uses a directed acyclic graph G = (V,E) and a set of conditional
probability distributions P to represent the joint distribution over X. Each node v ∈ V corresponds
to an Xi ∈ X. The edges of the graph encode dependencies among the variables and can be used
to infer conditional independence among variables using notions of d-separation. The parents of
node Xi, denoted PAi, are the set of v j ∈ V such that (v j,vi) ∈ E. The set P contains a conditional
probability distribution for each variable given its parents, p(xi|pai). The acyclicity constraint on G
ensures that the CPDs in P factor the joint distribution into the formula below. A directed graph is
acyclic if there is no directed path that starts and ends at the same variable. More specifically, there

6. In this paper, we use the term consistent to refer to the consistency of the individual CPDs (as Heckerman et al.,
2000), rather than the asymptotic properties of a statistical estimator.

656

RELATIONAL DEPENDENCY NETWORKS

can be no self-loops from a variable to itself. Given (G,P), the joint probability for a set of values
x is computed with the formula:

p(x) =
n

∏
i=1

p(xi|pai).

A Markov network for X uses an undirected graph U = (V,E) and a set of potential functions
Φ to represent the joint distribution over X. Again, each node v ∈ V corresponds to an Xi ∈ X and
the edges of the graph encode conditional independence assumptions. However, with undirected
graphs, conditional independence can be inferred using simple graph separation. Let C(U) be the
set of cliques in the graph U . Then each clique c ∈ C(U) is associated with a set of variables Xc

and a clique potential φc(xc) which is a non-negative function over the possible values for xc. Given
(U,Φ), the joint probability for a set of values x is computed with the formula:

p(x) =
1
Z

c

∏
i=1

φi(xci),

where Z = ∑X ∏c
i=1 φi(xci) is a normalizing constant, which sums over all possible instantiations of

x to ensure that p(x) is a true probability distribution.

2.1 DN Representation

Dependency networks are an alternative form of graphical model that approximates the full joint
distribution with a set of conditional probability distributions that are each learned independently.
A DN encodes probabilistic relationships among a set of variables X in a manner that combines
characteristics of both undirected and directed graphical models. Dependencies among variables
are represented with a directed graph G = (V,E), where conditional independence is interpreted
using graph separation, as with undirected models. However, as with directed models, dependencies
are quantified with a set of conditional probability distributions P. Each node vi ∈ V corresponds
to an Xi ∈ X and is associated with a probability distribution conditioned on the other variables,
P(vi) = p(xi|x−{xi}). The parents of node i are the set of variables that render Xi conditionally
independent of the other variables (p(xi|pai) = p(xi|x−{xi})), and G contains a directed edge
from each parent node v j to each child node vi ((v j,vi) ∈ E iff X j ∈ pai). The CPDs in P do not
necessarily factor the joint distribution so we cannot compute the joint probability for a set of values
x directly. However, given G and P, a joint distribution can be recovered through Gibbs sampling
(see Section 3.4 for details). From the joint distribution, we can extract any probabilities of interest.

For example, the DN in Figure 1 models the set of variables: X = {X1,X2,X3,X4,X5}. Each
node is conditionally independent of the other nodes in the graph given its immediate neighbors
(e.g., X1 is conditionally independent of {X2,X4} given {X3,X5}). Each node contains a CPD,
which specifies a probability distribution over its possible values, given the values of its parents.

2.2 DN Learning

Both the structure and parameters of DNs are determined through learning the local CPDs. The
DN learning algorithm learns a separate distribution for each variable Xi, conditioned on the other
variables in the data (i.e., X−{Xi}). Any conditional learner can be used for this task (e.g., logistic
regression, decision trees). The CPD is included in the model as P(vi) and the variables selected by
the conditional learner form the parents of Xi (e.g., if p(xi|{x−xi}) = αx j +βxk then PAi = {x j,xk}).

657

NEVILLE AND JENSEN

X 1

X
3

X 2

X 4X 5 p (X 4 | X 2 , X 3)

p (X 2 | X 3 , X 4)

p (X 5 | X 1)

p (X 1 | X 3 , X 5)

p (X 3 | X 1 , X 2 , X 4)

Figure 1: Example dependency network.

The parents are then reflected in the edges of G appropriately. If the conditional learner is not
selective (i.e., the algorithm does not select a subset of the features), the DN will be fully connected
(i.e., PAi = x−{xi}). In order to build understandable DNs, it is desirable to use a selective learner
that will learn CPDs that use a subset of all available variables.

2.3 DN Inference

Although the DN approach to structure learning is simple and efficient, it can result in an inconsis-
tent network, both structurally and numerically. In other words, there may be no joint distribution
from which each of the CPDs can be obtained using the rules of probability. Learning the CPDs in-
dependently with a selective conditional learner can result in a network that contains a directed edge
from Xi to X j, but not from X j to Xi. This is a structural inconsistency—Xi and X j are dependent but
X j is not represented in the CPD for Xi. In addition, learning the CPDs independently from finite
samples may result in numerical inconsistencies in the parameter estimates. If this is the case, the
joint distribution derived numerically from the CPDs will not sum to one. However, when a DN is
inconsistent, approximate inference techniques can still be used to estimate a full joint distribution
and extract probabilities of interest. Gibbs sampling can be used to recover a full joint distribution,
regardless of the consistency of the local CPDs, provided that each Xi is discrete and its CPD is
positive (Heckerman et al., 2000). In practice, Heckerman et al. (2000) show that DNs are nearly
consistent if learned from large data sets because the data serve a coordinating function to ensure
some degree of consistency among the CPDs.

3. Relational Dependency Networks

Several characteristics of DNs are particularly desirable for modeling relational data. First, learning
a collection of conditional models offers significant efficiency gains over learning a full joint model.
This is generally true, but it is even more pertinent to relational settings where the feature space is
very large. Second, networks that are easy to interpret and understand aid analysts’ assessment of
the utility of the relational information. Third, the ability to represent cycles in a network facilitates
reasoning with autocorrelation, a common characteristic of relational data. In addition, whereas
the need for approximate inference is a disadvantage of DNs for propositional data, due to the
complexity of relational model graphs in practice, all PRMs use approximate inference.

Relational dependency networks extend DNs to work with relational data in much the same way
that RBNs extend Bayesian networks and RMNs extend Markov networks.7 These extensions take

7. See Section 5.1 for a more detailed description of RBNs and RMNs.

658

RELATIONAL DEPENDENCY NETWORKS

a graphical model formalism and upgrade (Kersting, 2003) it to a first-order logic representation
with an entity-relationship model. We start by describing the general characteristics of probabilistic
relational models and then discuss the details of RDNs in this context.

3.1 Probabilistic Relational Models

PRMs represent a joint probability distribution over the attributes of a relational data set. When
modeling propositional data with a graphical model, there is a single graph G that comprises the
model. In contrast, there are three graphs associated with models of relational data: the data graph
GD, the model graph GM , and the inference graph GI . These correspond to the skeleton, model, and
ground graph as outlined in Heckerman et al. (2004).

First, the relational data set is represented as a typed, attributed data graph GD = (VD,ED). For
example, consider the data graph in Figure 2a. The nodes VD represent objects in the data (e.g.,
authors, papers) and the edges ED represent relations among the objects (e.g., author-of, cites).8

Each node vi ∈ VD and edge e j ∈ ED is associated with a type, T (vi) = tvi and T (e j) = te j (e.g.,
paper, cited-by). Each item9 type t ∈ T has a number of associated attributes Xt = (X t

1, ...,X
t
m) (e.g.,

topic, year). Consequently, each object vi and link e j is associated with a set of attribute values

determined by their type, X
tvi
vi = (X

tvi
vi1

, ...,X
tvi
vim) and X

tej
ej = (X

te j

e j1
, ...,X

te j

e jm′
). A PRM represents a

joint distribution over the values of the attributes in the data graph, x = {x
tvi
vi : vi ∈ V s.t. T (vi) =

tvi}∪{x
tej
ej : e j ∈ E s.t. T (e j) = te j}.

� ��� � ���

���
	���

��� � � �
�

���
	���

���
	
�

��� � � �
�

��� � � �
�

��� � � �
� ���
	
�

���������

���� �! "#%$�	
�

#��&	�' ()&���
*,+&- .�/0�

1&2
3
4��
 �5

6 7
8�9 :
6�;%8%<
=�<�>�?
@A7
B C D E&F%G�H

>
B�I

AuthoredBy

AuthoredBy

Figure 2: Example (a) data graph and (b) model graph.

Next, the dependencies among attributes are represented in the model graph GM = (VM,EM).
Attributes of an item can depend probabilistically on other attributes of the same item, as well as
on attributes of other related objects or links in GD. For example, the topic of a paper may be
influenced by attributes of the authors that wrote the paper. The relations in GD are used to limit
the search for possible statistical dependencies, thus they constrain the set of edges that can appear
in GM . However, note that a relationship between two objects in GD does not necessarily imply a
probabilistic dependence between their attributes in GM.

Instead of defining the dependency structure over attributes of specific objects, PRMs define a
generic dependency structure at the level of item types. Each node v ∈ VM corresponds to an X t

k ,

8. We use rectangles to represent objects, circles to represent random variables, dashed lines to represent relations, and
solid lines to represent probabilistic dependencies.

9. We use the generic term “item” to refer to objects or links.

659

NEVILLE AND JENSEN

where t ∈ T ∧ X t
k ∈ Xt. The set of attributes Xt

k = (X t
ik : (vi ∈ V ∨ ei ∈ E) ∧ T (i) = t) is tied

together and modeled as a single variable. This approach of typing items and tying parameters
across items of the same type is an essential component of PRM learning. It enables generalization
from a single instance (i.e., one data graph) by decomposing the data graph into multiple examples
of each item type (e.g., all paper objects), and building a joint model of dependencies between and
among attributes of each type.

As in conventional graphical models, each node is associated with a probability distribution
conditioned on the other variables. Parents of X t

k are either: (1) other attributes associated with
items of type tk (e.g., paper topic depends on paper type), or (2) attributes associated with items of
type t j where items t j are related to items tk in GD (e.g., paper topic depends on author rank). For the
latter type of dependency, if the relation between tk and t j is one-to-many, the parent consists of a set
of attribute values (e.g., author ranks). In this situation, current PRMs use aggregation functions to
generalize across heterogeneous attributes sets (e.g., one paper may have two authors while another
may have five). Aggregation functions are used to either map sets of values into single values, or to
combine a set of probability distributions into a single distribution.

Consider the RDN model graph GM in Figure 2b.10 It models the data in Figure 2a, which
has two object types: paper and author. In GM , each item type is represented by a plate, and each
attribute of each item type is represented as a node. Edges characterize the dependencies among the
attributes at the type level. The representation uses a modified plate notation. Dependencies among
attributes of the same object are represented by arcs within a rectangle; arcs that cross rectangle
boundaries represent dependencies among attributes of related objects, with edge labels indicating
the underlying relations. For example, monthi depends on typei, while avgrank j depends on the
typek and topick for all papers k written by author j in GD.

There is a nearly limitless range of dependencies that could be considered by algorithms for
learning PRMs. In propositional data, learners model a fixed set of attributes intrinsic to each
object. In contrast, in relational data, learners must decide how much to model (i.e., how much of
the relational neighborhood around an item can influence the probability distribution of an item’s
attributes). For example, a paper’s topic may depend of the topics of other papers written by its
authors—but what about the topics of the references in those papers or the topics of other papers
written by coauthors of those papers? Two common approaches to limiting search in the space
of relational dependencies are: (1) exhaustive search of all dependencies within a fixed-distance
neighborhood in GD (e.g., attributes of items up to k links away), or (2) greedy iterative-deepening
search, expanding the search in GD in directions where the dependencies improve the likelihood.

Finally, during inference, a PRM uses a model graph GM and a data graph GD to instantiate an
inference graph GI = (VI,VE) in a process sometimes called “roll out.” The roll out procedure used
by PRMs to produce GI is nearly identical to the process used to instantiate sequence models such
as hidden Markov models. GI represents the probabilistic dependencies among all the variables in
a single test set (here GD is usually different from G ′D used for training). The structure of GI is
determined by both GD and GM—each item-attribute pair in GD gets a separate, local copy of the
appropriate CPD from GM. The relations in GD determine the way that GM is rolled out to form GI .
PRMs can produce inference graphs with wide variation in overall and local structure because the
structure of GI is determined by the specific data graph, which typically has non-uniform structure.
For example, Figure 3 shows the model from Figure 2b rolled out over the data set in Figure 2a.

10. For clarity, we omit cyclic autocorrelation dependencies in this example. See Section 4.2 for more complex model
graphs.

660

RELATIONAL DEPENDENCY NETWORKS

Notice that there are a variable number of authors per paper. This illustrates why current PRMs
use aggregation in their CPDs—for example, the CPD for paper-type must be able to deal with a
variable number of author ranks.

���
�����	�

���
� ��	�

� �
�	���� �

� �
�������

���
�����	�

���
� ��	�

� �
�	���� �

� �
�������

� �
�����
���	��

��!
�����	�

� !
� ��	�

� !
�	���� �

� !
�������

� !
�����
���	��

� �
�����
���	��

�#"
�����
���	��

� "
�����	�

� "
� ��	�

��"
�	���� �

��"
�������

Figure 3: Example inference graph.

3.2 RDN Representation

Relational dependency networks encode probabilistic relationships in a similar manner to DNs,
extending the representation to a relational setting. RDNs use a directed model graph GM with a
set of conditional probability distributions P. Each node vi ∈ VM corresponds to an X t

k ∈ Xt, t ∈ T
and is associated with a conditional distribution p(xt

k | paxt
k
). Figure 2b illustrates an example RDN

model graph for the data graph in Figure 2a. The graphical representation illustrates the qualitative
component (GD) of the RDN—it does not depict the quantitative component (P) of the model, which
consists of CPDs that use aggregation functions. Although conditional independence is inferred
using an undirected view of the graph, directed edges are useful for representing the set of variables
in each CPD. For example, in Figure 2b the CPD for year contains topic but the CPD for topic does
not contain year. This represents any inconsistencies that result from the RDN learning technique.

A consistent RDN specifies a joint probability distribution p(x) over the attribute values of a
relational data set from which each CPD ∈ P can be derived using the rules of probability. There
is a direct correspondence between consistent RDNs and relational Markov networks. It is similar
to the correspondence between consistent DNs and Markov networks (Heckerman et al., 2000), but
the correspondence is defined with respect to the template model graphs GM and UM.

Theorem 1 The set of positive distributions that can be encoded by a consistent RDN (GM,P) is
equal to the set of positive distributions that can be encoded by an RMN (UM,Φ) provided (1)
GM = UM , and (2) P and Φ use the same aggregation functions.

Proof Let p be a positive distribution defined by an RMN (UM,Φ) for GD. First, we construct
a Markov network with tied clique potentials by rolling out the RMN inference graph UI over the
data graph GD. By Theorem 1 of Heckerman et al. (2000), which uses the Hammersley-Clifford
theorem (Besag, 1974), there is a corresponding dependency network that represents the same dis-
tribution p as the Markov network UI . Since the conditional probability distribution for each oc-
currence of an attribute k of a given type t (i.e., ∀i (vi ∈ VD ∨ ei ∈ ED) ∧ T (i) = t p(xt

ik|x)) is
derived from the Markov network, we know that the resulting CPDs will be identical—the nodes

661

NEVILLE AND JENSEN

adjacent to each occurrence are equivalent by definition, thus by the global Markov property the
derived CPDs will be identical. From this dependency network we can construct a consistent RDN
(GM,P) by first setting GM = UM . Next, we compute from UI the CPDs for the attributes of each
item type: p(xt

k|x−{x
t
k}) for t ∈ T,X t

k ∈Xt. To derive the CPDs for P, the CPDs must use the same
aggregation functions as the potentials in Φ. Since the adjacencies in the RDN model graph are the
same as those in the RMN model graph, and there is a correspondence between the rolled out DN
and MN, the distribution encoded by the RDN is p.

Next let p be a positive distribution defined by an RDN (GM,P) for GD. First, we construct a
dependency network with tied CPDs by rolling out the RDN inference graph GI over the data graph
GD. Again, by Theorem 1 of Heckerman et al. (2000), there is a corresponding Markov network that
represents the same distribution p as the dependency network GI . Of the valid Markov networks
representing p, there will exist a network where the potentials are tied across occurrences of the
same clique template (i.e., ∀ci ∈ C φC(xC)). This follows from the first part of the proof, which
shows that each RMN with tied clique potentials can be transformed to an RDN with tied CPDs.
From this Markov network we can construct an RMN (UM,Φ) by setting UM = GM and grouping
the set of clique template potentials in Φ. Since the adjacencies in the RMN model graph are the
same as those in the RDN model graph, and since there is a correspondence between the rolled out
MN and DN, the distribution encoded by the RMN is p.

This proof shows an exact correspondence between consistent RDNs and RMNs. We cannot
show the same correspondence for general RDNs. However, we will show in Section 3.4 that Gibbs
sampling can be used to extract a unique joint distribution, regardless of the consistency of the
model.

3.3 RDN Learning

Learning a PRM consists of two tasks: learning the dependency structure among the attributes of
each object type, and estimating the parameters of the local probability models for an attribute
given its parents. Relatively efficient techniques exist for learning both the structure and param-
eters of RBNs. However, these techniques exploit the requirement that the CPDs factor the full
distribution—a requirement that imposes acyclicity constraints on the model and precludes the
learning of arbitrary autocorrelation dependencies. On the other hand, it is possible for RMN
techniques to learn cyclic autocorrelation dependencies in principle. However, inefficiencies due
to calculating the normalizing constant Z in undirected models make this difficult in practice. Cal-
culation of Z requires a summation over all possible states x. When modeling the joint distribution
of propositional data, the number of states is exponential in the number of attributes (i.e., O(2m)).
When modeling the joint distribution of relational data, the number of states is exponential in the
number of attributes and the number of instances. If there are N objects, each with m attributes,
then the total number of states is O(2Nm). For any reasonable-size data set, a single calculation
of Z is an enormous computational burden. Feature selection generally requires repeated parameter
estimation while measuring the change in likelihood affected by each attribute, which would require
recalculation of Z on each iteration.

The RDN learning algorithm uses a more efficient alternative—estimating the set of condi-
tional distributions independently rather than jointly. This approach is based on pseudolikelihood
techniques (Besag, 1975), which were developed for modeling spatial data sets with similar auto-

662

RELATIONAL DEPENDENCY NETWORKS

correlation dependencies. The pseudolikelihood for data graph GD is computed as a product over
the item types t, the attributes of that type X t , and the items of that type v,e:

PL(GD;θ) = ∏
t∈T

∏
X t

i ∈Xt
∏

v:T (v)=t

p(xt
vi|paxt

vi
;θ) ∏

e:T (e)=t

p(xt
ei|paxt

ei
;θ). (1)

On the surface, Equation 1 may appear similar to a likelihood that specifies a joint distribution
of an RBN. However, the CPDs in the RDN pseudolikelihood are not required to factor the joint
distribution of GD. More specifically, when we consider the variable X t

vi, we condition on the
values of the parents PAX t

vi
regardless of whether the estimation of CPDs for variables in PAX t

vi
was

conditioned on X t
vi. The parents of X t

vi may include other variables on the same item (e.g., X t
vi′ such

that i′ 6= i), the same variable on related items (e.g., X t
v′i such that v′ 6= v), or other variables on

related items (e.g., X t ′
v′i′ such that v′ 6= v and i′ 6= i).

Pseudolikelihood estimation avoids the complexities of estimating Z and the requirement of
acyclicity. Instead of optimizing the log-likelihood of the full joint distribution, we optimize the
pseudo-loglikelihood. The contribution for each variable is conditioned on all other attribute values
in the data, thus we can maximize the pseudo-loglikelihood for each variable independently:

log PL(GD;θ) = ∑
t∈T

∑
X t

i ∈X t
∑

v:T (v)=t

log p(xt
vi|paxt

vi
;θ)+ ∑

e:T (e)=t

log p(xt
ei|paxt

ei
;θ).

In addition, this approach can make use of existing techniques for learning conditional probability
distributions of relational data such as first-order Bayesian classifiers (Flach and Lachiche, 1999),
structural logistic regression (Popescul et al., 2003), or ACORA (Perlich and Provost, 2003).

Maximizing the pseudolikelihood function gives the maximum pseudolikelihood estimate
(MPLE) of θ. To estimate the parameters we need to solve the following pseudolikelihood equation:

∂
∂θ

PL(GD;θ) = 0. (2)

With this approach we lose the asymptotic efficiency properties of maximum likelihood esti-
mators. However, under some general conditions the asymptotic properties of the MPLE can be
established. In particular, in the limit as sample size grows, the MPLE will be an unbiased estimate
of the true parameter θ0 and it will be normally distributed. Geman and Graffine (1987) established
the first proof of the properties of maximum pseudolikelihood estimators of fully observed data.
Gidas (1986) gives an alternative proof and Comets (1992) establishes a more general proof that
does not require a finite state space x or stationarity of the true distribution Pθ0 .

Theorem 2 Assume the following regularity conditions11 are satisfied for an RDN:

1. The model is identifiable (i.e., if θ 6= θ′, then PL(GD;θ) 6= PL(GD;θ′)).

2. The distributions PL(GD;θ) have common support and are differentiable with respect to θ.

3. The parameter space Ω contains an open set ω of which the true parameter θ0 is an interior
point.

11. These are the standard regularity conditions (e.g., Casella and Berger, 2002) used to prove asymptotic properties of
estimators, which are satisfied in most reasonable problems.

663

NEVILLE AND JENSEN

In addition, assume the pseudolikelihood equation (Equation 2) has a unique solution in Ω almost
surely as |GD| → ∞. Then, provided that GD is of bounded degree, the MPLE θ̃ converges in
probability to the true value θ0 as |GD| → ∞.

Proof Provided the size of the RDN does not grow as the size of the data set grows (i.e., |P| re-
mains constant as |GD| → ∞) and GD is of bounded degree, then previous proofs apply. We provide
the intuition for the proof here and refer the reader to Comets (1992), White (1994), and Lehmann
and Casella (1998) for details. Let θ̃ be the maximum pseudolikelihood estimate that maximizes
PL(GD;θ). As |GD| → ∞, the data will consist of all possible data configurations for each CPD ∈ P
(assuming bounded degree structure in GD). As such, the pseudolikelihood function will converge
to its expectation, PL(GD;θ)→ E(PL(GD;θ)). The expectation is maximized by the true parameter
θ0 because the expectation is taken with respect to all possible data configurations. Therefore as
|GD| → ∞, the MPLE converges to the true parameter (i.e., θ̃−θ0→ 0).

The RDN learning algorithm is similar to the DN learning algorithm, except we use a relational
probability estimation algorithm to learn the set of conditional models, maximizing pseudolikeli-
hood for each variable separately. The algorithm input consists of: (1) GD: a relational data graph,
(2) R: a conditional relational learner, and (3) Qt: a set of queries12 that specify the relational
neighborhood considered in R for each type T .

Table 1 outlines the learning algorithm in pseudocode. The algorithm cycles over each attribute
of each item type and learns a separate CPD, conditioned on the other values in the training data.
We discuss details of the subcomponents (querying and relational learners) in the sections below.

The asymptotic complexity of RDN learning is O(|X| · |PAX | ·N), where |X| is the number of
CPDs to be estimated, |PAX | is the number of attributes and N is the number of instances, used
to estimate the CPD for X .13 Quantifying the asymptotic complexity of RBN and RMN learning
is difficult due to the use of heuristic search and numerical optimization techniques. RBN learning
requires multiple rounds of parameter estimation during the algorithm’s heuristic search through the
model space, and each round of parameter estimation has the same complexity as RDN learning,
thus RBN learning will generally require more time. For RMN learning, there is no closed-form
parameter estimation technique. Instead the models are trained using conjugate gradient, where each
iteration requires approximate inference over the unrolled Markov network. In general this RMN
nested loop of optimization and approximation will require more time to learn than an RBN (Taskar
et al., 2002). Therefore, given equivalent search spaces, RMN learning is generally more complex
than RBN learning, and RBN learning is generally more complex than RDN learning.

3.3.1 QUERIES

In our implementation, we use queries to specify the relational neighborhoods that will be con-
sidered by the conditional learner R. The queries’ structures define a typing over instances in the
database. Subgraphs are extracted from a larger graph database using the visual query language
QGraph (Blau et al., 2001). Queries allow for variation in the number and types of objects and links
that form the subgraphs and return collections of all matching subgraphs from the database.

12. Our implementation employs a set of user-specified queries to limit the search space considered during learning.
However, a simple depth limit (e.g., ≤ 2 links away in the data graph) can be used to limit the search space as well.

13. This assumes the complexity of the relational learner R is O(|PAX | ·N), which is true for the two relational learners
considered in this paper.

664

RELATIONAL DEPENDENCY NETWORKS

Learn RDN (GD,R,Qt):
P← /0
For each t ∈ T :

For each X t
k ∈ Xt:

Use R to learn a CPD for X t
k given the attributes in the relational

neighborhood defined by Qt .
P← P ∪ CPDX t

k

Use P to form GM.

Table 1: RDN learning algorithm.

Paper

A u t hor

Refer-

ence

Refer-

ence

Refer-

ence

Refer-

ence

Refer-

ence

Refer-

ence

Refer-

enceA u t hor

Paper

A u t hor

Linktype=AuthorOf

Refer-

ence

Linktype=Cites

AND(Objecttype=Paper,

Year=1 9 9 5)

Objecttype=Person

Objecttype=Paper

[0 . .]

[0 . .]

(a) (b)

Paper. ID! =Reference. ID

Figure 4: (a) Example QGraph query: Textual annotations specify match conditions on attribute
values; numerical annotations (e.g., [0..]) specify constraints on the cardinality of
matched objects (e.g., zero or more authors), and (b) matching subgraph.

For example, consider the query in Figure 4a.14 The query specifies match criteria for a target
item (paper) and its local relational neighborhood (authors and references). The example query
matches all research papers that were published in 1995 and returns for each paper a subgraph that
includes all authors and references associated with the paper. Note the constraint on paper ID in the
lower left corner—this ensures that the target paper does not match as a reference in the resulting
subgraphs. Figure 4b shows a hypothetical match to this query: a paper with two authors and seven
references.

The query defines a typing over the objects of the database (e.g., people that have authored a
paper are categorized as authors) and specifies the relevant relational context for the target item
type in the model. For example, given this query the learner R would model the distribution of a
paper’s attributes given the attributes of the paper itself and the attributes of its related authors and
references. The queries are a means of restricting model search. Instead of setting a simple depth
limit on the extent of the search, the analyst has a more flexible means with which to limit the search
(e.g., we can consider other papers written by the paper’s authors but not other authors of the paper’s
references).

14. We have modified QGraph’s visual representation to conform to our convention of using rectangles to represent
objects and dashed lines to represent relations.

665

NEVILLE AND JENSEN

3.3.2 CONDITIONAL RELATIONAL LEARNERS

The conditional relational learner R is used for both parameter estimation and structure learning in
RDNs. The variables selected by R are reflected in the edges of GM appropriately. If R selects all of
the available attributes, the RDN will be fully connected.

In principle, any conditional relational learner can be used as a subcomponent to learn the indi-
vidual CPDs provided that it can closely approximate CPDs consistent with the joint distribution. In
this paper, we discuss the use of two different conditional models—relational Bayesian classifiers
(RBCs) (Neville et al., 2003b) and relational probability trees (RPTs) (Neville et al., 2003a).
Relational Bayesian Classifiers
RBCs extend Bayesian classifiers to a relational setting. RBCs treat heterogeneous relational sub-
graphs as a homogenous set of attribute multisets. For example, when considering the references
of a single paper, the publication dates of those references form multisets of varying size (e.g.,
{1995, 1995, 1996}, {1975, 1986, 1998, 1998}). The RBC assumes each value of a multiset is
independently drawn from the same multinomial distribution.15 This approach is designed to mir-
ror the independence assumption of the naive Bayesian classifier. In addition to the conventional
assumption of attribute independence, the RBC also assumes attribute value independence within
each multiset.

For a given item type t ∈ T , the query scope specifies the set of item types TR that form the
relevant relational neighborhood for t. Note that TR does not necessarily contain all item types
in the database and the query may also dynamically introduce new types in the returned view of
the database (e.g., papers → papers and references). For example, in Figure 4a, t = paper and
TR = {paper,author,re f erence,authoro f ,cites}. To estimate the CPD for attribute X on items t
(e.g., paper topic), the RBC considers all the attributes associated with the types in TR. RBCs are
non-selective models, thus all attributes are included as parents:

p(x|pax) ∝ ∏
t ′∈TR

∏
X t′

i ∈X t′
∏

v∈TR(x)

p(xt ′
vi|x) p(x).

Relational Probability Trees
RPTs are selective models that extend classification trees to a relational setting. RPTs also treat het-
erogeneous relational subgraphs as a set of attribute multisets, but instead of modeling the multisets
as independent values drawn from a multinomial, the RPT algorithm uses aggregation functions to
map a set of values into a single feature value. For example, when considering the publication dates
on references of a research paper, the RPT could construct a feature that tests whether the average
publication date was after 1995. Figure 5 provides an example RPT learned on citation data.

The RPT algorithm automatically constructs and searches over aggregated relational features to
model the distribution of the target variable X on items of type t. The algorithm constructs features
from the attributes associated with the types TR specified in the query for t. The algorithm considers
four classes of aggregation functions to group multiset values: mode, count, proportion, and degree
(i.e., the number of values in the multiset). For discrete attributes, the algorithm constructs features
for all unique values of an attribute. For continuous attributes, the algorithm constructs features for
a number of different discretizations, binning the values by frequency (e.g., year > 1992). Count,
proportion, and degree features consider a number of different thresholds (e.g., proportion(A) >
10%). All experiments reported herein considered 10 thresholds and discretizations per feature.

15. Alternative constructions are possible but prior work (Neville et al., 2003b) has shown this approach achieves superior
performance over a wide range of conditions.

666

RELATIONAL DEPENDENCY NETWORKS

Reference��������� 	
�����
�
������� ��� ����� ����� � �
�

A u t horP aper��� ������� � � ����� 	������
�
������� ��� ����� ����� � �
� �!�"�#

Reference�$� ������� � � ����� 	������ �
	�%
����� &�� �!�'�#

A u t horP aper��� ������� � � ����� 	������ �
(���
��� �)*� +��
� �,�'�#

A u t horP aper��� ������� � � ����� 	
�����
�
�$� ��-������ %
����� � $.
'�#

A u t horP aper�$� ������� � � ����� 	������ �
(���
��� �)*� +��
� �,�'�#

A u t horP aper�$� ������� � � ����� 	
�����
�
/ ���
��0���� ����� $. '�#

Reference��������� 	������
�
�$� ��-������ %
�����
�

Reference�1������� 	������ �
(���
��� �)*� +��
�

Reference��������� 	
�����
�
/ ���
��0���� �����

Reference��������� 	
�����
�
2$��� � 3 ��� ��4������ �
�

5 �

5 5

5

5

� �

�

�

5 � � �5 5

5

5 5

�

� �

Figure 5: Example RPT to predict machine-learning paper topic.

The RPT algorithm uses recursive greedy partitioning, splitting on the feature that maximizes
the correlation between the feature and the class. Feature scores are calculated using the chi-square
statistic and the algorithm uses pre-pruning in the form of a p-value cutoff and a depth cutoff to limit
tree size and overfitting. All experiments reported herein used p-value cutoff=0.05/|attributes|,
depth cutoff=7. Although the objective function does not optimize pseudolikelihood directly, prob-
ability estimation trees can be used effectively to approximate CPDs consistent with the underlying
joint distribution (Heckerman et al., 2000).

The RPT learning algorithm adjusts for biases towards particular features due to degree disparity
and autocorrelation in relational data (Jensen and Neville, 2002, 2003). We have shown that RPTs
build significantly smaller trees than other conditional models and achieve equivalent, or better,
performance (Neville et al., 2003a). These characteristics of RPTs are crucial for learning under-
standable RDNs and have a direct impact on inference efficiency because smaller trees limit the size
of the final inference graph.

3.4 RDN Inference

The RDN inference graph GI is potentially much larger than the original data graph. To model the
full joint distribution there must be a separate node (and CPD) for each attribute value in GD. To
construct GI , the set of template CPDs in P is rolled out over the test-set data graph. Each item-
attribute pair gets a separate, local copy of the appropriate CPD. Consequently, the total number of
nodes in the inference graph will be ∑v∈VD

|XT(v)|+∑e∈ED
|XT(e)|. Roll out facilitates generalization

across data graphs of varying size—we can learn the CPD templates from one data graph and apply
the model to a second data graph with a different number of objects by rolling out more CPD copies.
This approach is analogous to other graphical models that tie distributions across the network and
roll out copies of model templates (e.g., hidden Markov models, conditional random fields (Lafferty
et al., 2001)).

We use Gibbs samplers for inference in RDNs. This refers to a procedure where a random
ordering of the variables is selected; each variable is initialized to an arbitrary value; and then each

667

NEVILLE AND JENSEN

variable is visited (repeatedly) in order, where its value is resampled according to its conditional
distribution. Gibbs sampling can be used to extract a unique joint distribution, regardless of the
consistency of the model.

Theorem 3 The procedure of a Gibbs sampler applied to an RDN (G,P), where each Xi is discrete
and each local distribution in P is positive, defines a Markov chain with a unique stationary joint
distribution π̃ for X that can be reached from any initial state of the chain.

Proof The proof that Gibbs sampling can be used to estimate the joint distribution of a dependency
network (Heckerman et al., 2000) applies to rolled out RDNs as well. We restate the proof here for
completeness.

Let xt be the sample of x after the t th iteration of the Gibbs sampler. The sequence x1,x2, ... can
be viewed as samples drawn from a homogeneous Markov chain with transition matrix P̃, where
P̃i j = p(xt+1 = j|xt = i). The matrix P̃ is the product P̃1 · P̃2 · ... · P̃n, where P̃k is the local transition
matrix describing the resampling of X k according to the local distribution of p(xk|pak). The positiv-
ity of the local distributions guarantees the positivity of P̃. The positivity of P̃ in turn guarantees that
the Markov chain is irreducible and aperiodic. Consequently there exists a unique joint distribution
that is stationary with respect to P̃, and this stationary distribution can be reached from any starting
point.

This shows that a Gibbs sampling procedure can be used with an RDN to recover samples from
a unique stationary distribution π̃, but how close will this distribution be to the true distribution
π? Small perturbations in the local CPDs could propagate in the Gibbs sampling procedure to pro-
duce large deviations in the stationary distribution. Heckerman et al. (2000) provide some initial
theoretical analysis that suggests that Markov chains with good convergence properties will be in-
sensitive to deviations in the transition matrix. This implies that when Gibbs sampling is effective
(i.e., converges), then π̃ will be close to π and the RDN will be a close approximation to the full
joint distribution.

Table 2 outlines the inference algorithm. To estimate a joint distribution, we start by rolling out
the model GM onto the target data set GD and forming the inference graph GI . The values of all
unobserved variables are initialized to values drawn from prior distributions, which we estimate em-
pirically from the training set. Gibbs sampling then iteratively relabels each unobserved variable by
drawing from its local conditional distribution, given the current state of the rest of the graph. After
a sufficient number of iterations (burn in), the values will be drawn from a stationary distribution
and we can use the samples to estimate probabilities of interest.

For prediction tasks, we are often interested in the marginal probabilities associated with a single
variable X (e.g., paper topic). Although Gibbs sampling may be a relatively inefficient approach to
estimating the probability associated with a joint assignment of values of X (e.g., when |X | is large),
it is often reasonably fast to use Gibbs sampling to estimate the marginal probabilities for each X .

There are many implementation issues that can improve the estimates obtained from a Gibbs
sampling chain, such as length of burn-in and number of samples. For the experiments reported
in this paper, we used fixed-length chains of 2000 samples (each iteration re-labels every value
sequentially) with burn-in set at 100. Empirical inspection indicated that the majority of chains had
converged by 500 samples. Section 4.1 includes convergence graphs for synthetic data experiments.

668

RELATIONAL DEPENDENCY NETWORKS

Infer RDN (GD,GM,P, iter,burnin):

GI(VI,EI)← (/0, /0) \\ form GI from GD and GM

For each t ∈ T in GM:
For each X t

k ∈ Xt in GM:
For each vi ∈VD s.t. T (vi) = t and ei ∈ ED s.t. T (ei) = t:

VI ←VI ∪ {X t
ik}

For each vi ∈VD s.t. T (vi) = t and ei ∈ ED s.t. T (ei) = t:
For each v j ∈VD s.t. Xv j ∈ paX t

ik
and each e j ∈ ED s.t. Xe j ∈ paX t

ik
:

EI ← EI ∪ {ei j}

For each v ∈VI : \\ initialize Gibbs sampling
Randomly initialize xv to value drawn from prior distribution p(xv)

S← /0 \\ Gibbs sampling procedure
Choose a random ordering over VI

For i ∈ iter:
For each v ∈VI , in random order:

Resample x′v from p(xv|x−{xv})
xv← x′v
If i > burnin:

S← S ∪ {x}:
Use samples S to estimate probabilities of interest

Table 2: RDN inference algorithm.

4. Experiments

The experiments in this section demonstrate the utility of RDNs as a joint model of relational data.
First, we use synthetic data to assess the impact of training-set size and autocorrelation on RDN
learning and inference, showing that accurate models can be learned with reasonable data set sizes
and that the model is robust to varying levels of autocorrelation. In addition, to assess the quality
of the RDN approximation for inference, we compare RDNs to RMNs, showing that RDNs achieve
equivalent or better performance over a range of data sets. Next, we learn RDNs of five real-world
data sets to illustrate the types of domain knowledge that the models discover automatically. In
addition, we evaluate RDNs in a prediction context, where only a single attribute is unobserved in
the test set, and report significant performance gains compared to two conditional models.

4.1 Synthetic Data Experiments

To explore the effects of training-set size and autocorrelation on RDN learning and inference, we
generated homogeneous data graphs with an autocorrelated class label and linkage due to an under-
lying (hidden) group structure. Each object has four boolean attributes: X1, X2, X3, and X4. We used
the following generative process for a data set with NO objects and NG groups:

669

NEVILLE AND JENSEN

For each object i, 1≤ i≤ NO:

Choose a group gi uniformly from the range [1,NG].

For each object j, 1≤ j ≤ NO:

For each object k, j < k ≤ NO:

Choose whether the two objects are linked from p(E|G j = Gk), a Bernoulli
probability conditioned on whether the two objects are in the same group.

For each object i, 1≤ i≤ NO:

Randomly initialize the values of X = {X1,X2,X3,X4} from a uniform prior dis-
tribution.

Update the values of X with 500 iterations of Gibbs sampling using RDN∗, a manually
specified model.16

The data generation procedure for X uses a manually specified model where X1 is autocor-
related (through objects one link away), X2 depends on X1, and the other two attribute have no
dependencies. To generate data with autocorrelated X1 values, we used conditional models for
p(X1|X1R,X2,X3,X4). RPT0.5 refers to the RPT CPD that is used to generate data with autocor-
relation levels of 0.5. RBC0.5 refers to the analogous RBC CPD. Appendix A contains detailed
specifications of these models. Unless otherwise specified, the experiments use the settings below:

NO = 250,

NG =
NO

10
,

p(E|G j =Gk) = {p(E =1|G j =Gk) = 0.50; p(E =1|G j 6=Gk) =
1

NO
},

RDN∗ =: [p(X1|X1R,X2,X3,X4) = p(X1|X1R,X2) = RPT0.5 or RBC0.5;

p(X2|X1) = {p(X2 =1|X1 =1) = p(X2 =0|X1 =0) = 0.75};

p(X3 = 1) = p(X4 = 1) = 0.50].

4.1.1 RDN LEARNING

The first set of synthetic experiments examines the effectiveness of the RDN learning algorithm.
We learned CPDs for X1 using the intrinsic attributes of the object (X2,X3,X4) as well as the class
label of directly related objects (X1R). We also learned CPDs for each attribute (X2,X3,X4) using the
class label (X1). This mimics the structure of the true model used for data generation (i.e., RDN∗).

We compared two different learned RDNs: RDNRBC uses RBCs for the component learner R;
RDNRPT uses RPTs for R. The RPT performs feature selection, which may result in structural
inconsistencies in the learned RDN. The RBC does not use feature selection so any deviation from
the true model is due to parameter inconsistencies alone. Note that the two models do not consider
identical feature spaces so we can only roughly assess the impact of feature selection by comparing
RDNRBC and RDNRPT results.

Theoretical analysis indicates that, in the limit, the true parameters will maximize the pseu-
dolikelihood function. This indicates that the pseudolikelihood function, evaluated at the learned

16. We will use a star (i.e., RDN∗) to denote manually-specified RDNs.

670

RELATIONAL DEPENDENCY NETWORKS

parameters, will be no greater than the pseudolikelihood of the true model (on average). To evalu-
ate the quality of the RDN parameter estimates, we calculated the pseudolikelihood of the test-set
data using both the true models (RDN∗RPT , RDN∗RBC) and the learned models (RDNRPT , RDNRBC). If
the pseudolikelihood given the learned parameters approaches the pseudolikelihood given the true
parameters, then we can conclude that parameter estimation is successful. We also measured the
standard error of the pseudolikelihood estimate for a single test-set using learned models from 10
different training sets. This illustrates the amount of variance due to parameter estimation.

Figure 6 graphs the pseudo-loglikelihood of learned models as a function of training-set size for
three levels of autocorrelation. Training-set size was varied at the levels {50,100,250,
500,1000,5000}. We varied p(X1|X1R,X2) to generate data with approximate levels of autocorre-
lation corresponding to {0.25,0.50,0.75}. At each training set size (and autocorrelation level), we
generated 10 test sets. For each test set, we generated 10 training sets and learned RDNs. Using
each learned model, we measured the pseudolikelihood of the test set (size 250) and averaged the
results over the 10 models. We plot the mean pseudolikelihood for both the learned models and
the true models. The top row reports experiments with data generated from an RDN∗RPT , where we
learned an RDNRPT . The bottom row reports experiments with data generated from an RDN∗RBC,
where we learned an RDNRBC.

(a) Autocorrelation=0.25

−
65

0
−

60
0

−
55

0
−

50
0

50 100 500 2000 5000

P
se

du
ol

ik
el

ih
oo

d

Training Set Size

(b) Autocorrelation=0.50

−
65

0
−

60
0

−
55

0
−

50
0

50 100 500 2000 5000
Training Set Size

(c) Autocorrelation=0.75

−
65

0
−

60
0

−
55

0
−

50
0

50 100 500 2000 5000
Training Set Size

RDN*RPT

RDNRPT

−
65

0
−

60
0

−
55

0
−

50
0

50 100 500 2000 5000

P
se

du
ol

ik
el

ih
oo

d

Training Set Size

−
65

0
−

60
0

−
55

0
−

50
0

50 100 500 2000 5000
Training Set Size

−
65

0
−

60
0

−
55

0
−

50
0

50 100 500 2000 5000
Training Set Size

RDN*RBC

RDNRBC

Figure 6: Evaluation of RDN learning.

These experiments show that the learned RDNRPT is a good approximation to the true model by
the time training-set size reaches 500, and that RDN learning is robust with respect to varying levels
of autocorrelation.

671

NEVILLE AND JENSEN

There appears to be little difference between the RDNRPT and RDNRBC when autocorrelation is
low, but otherwise the RDNRBC needs significantly more data to estimate the parameters accurately.
One possible source of error is variance due to lack of selectivity in the RDNRBC, which necessitates
the estimation of a greater number of parameters. However, there is little improvement even when
we increase the size of the training sets to 10,000 objects. Furthermore, the discrepancy between
the estimated model and the true model is greatest when autocorrelation is moderate. This indicates
that the inaccuracies may be due to the naive Bayes independence assumption and its tendency to
produce biased probability estimates (Zadrozny and Elkan, 2001).

4.1.2 RDN INFERENCE

The second set of synthetic experiments evaluates the RDN inference procedure in a prediction
context, where only a single attribute is unobserved in the test set. We generated data with the
RDN∗RPT and RDN∗RBC as described above and learned models for X1 using the intrinsic attributes
of the object (X2,X3,X4) as well as the class label and the attributes of directly related objects
(X1R,X2R,X3R,X4R). At each autocorrelation level, we generated 10 training sets (size 500) to learn
the models. For each training set, we generated 10 test sets (size 250) and used the learned models
to infer marginal probabilities for X1 on the test set instances. To evaluate the predictions, we report
area under the ROC curve (AUC).17 These experiments used the same levels of autocorrelation
outlined above.

We compare the performance of four types of models. First, we measure the performance of
RPTs and RBCs. These are conditional models that reason about each instance independently and
do not use the class labels of related instances. Second, we measure the performance of learned
RDNs: RDNRBC and RDNRPT . For RDN inference, we used fixed-length Gibbs chains of 2000 sam-
ples with burn-in of 100. Third, we measure performance of the learned RDNs while allowing the
true labels of related instances to be used during inference. This demonstrates the level of perfor-
mance possible if the RDNs could infer the true labels of related instances with perfect accuracy.
We refer to these as ceiling models: RDNceil

RBC and RDNceil
RPT . Fourth, we measure the performance of

two RMNs described below.
The first RMN is non-selective. We construct features from all the attributes available to the

RDNs, defining clique templates for each pairwise combination of class label value and attribute
value. More specifically, the available attributes consist of the intrinsic attributes of objects, and
both the class label and attributes of directly related objects. The second RMN, which we refer to
as RMNSel , is a hybrid selective model—clique templates are only specified for the set of attributes
selected by the RDN during learning. For both models, we used maximum-a-posteriori parameter
estimation to estimate the feature weights, using conjugate gradient with zero-mean Gaussian priors,
and a uniform prior variance of 5.18 For RMN inference, we used loopy belief propagation (Murphy
et al., 1999).

We do not compare directly to RBNs because their acyclicity constraint prevents them from
representing the autocorrelation dependencies in this domain. Instead, we include the performance
of conditional models, which also cannot represent the autocorrelation of X1. Although RBNs and
conditional models cannot represent the autocorrelation directly, they can exploit the autocorre-
lation indirectly by using the observed attributes of related instances. For example, if there is a

17. Squared-loss results are qualitatively similar to the AUC results reported in Figure 7.
18. We experimented with a range of priors; this parameter setting produced the best empirical results.

672

RELATIONAL DEPENDENCY NETWORKS

correlation between the words on a webpage and its topic, and the topics of hyperlinked pages are
autocorrelated, then the models can exploit autocorrelation dependencies by modeling the contents
of a webpage’s neighboring pages. Recent work has shown that collective models (e.g., RDNs) are
a low-variance means of reducing bias through direct modeling of the autocorrelation dependen-
cies (Jensen et al., 2004). Models that exploit autocorrelation dependencies indirectly by modeling
the observed attributes of related instances, experience a dramatic increase in variance as the number
of observed attributes increases.

During inference we varied the number of known class labels in the test set, measuring perfor-
mance on the remaining unlabeled instances. This serves to illustrate model performance as the
amount of information seeding the inference process increases. We expect performance to be sim-
ilar when other information seeds the inference process—for example, when some labels can be
inferred from intrinsic attributes, or when weak predictions about many related instances serve to
constrain the system. Figure 7 graphs AUC results for each model as the proportion of known class
labels is varied.

Figure 7: Evaluation of RDN inference.

The data for the first set of experiments (top row) were generated with an RDN∗RPT . In all
configurations, RDNRPT performance is equivalent, or better than, RPT performance. This indicates
that even modest levels of autocorrelation can be exploited to improve predictions using an RDNRPT .
RDNRPT performance is indistinguishable from that of RDNceil

RPT except when autocorrelation is high
and there are no labels to seed inference. In this situation, the predictive attribute values (i.e., X2) are
the only information available to constrain the system during inference so the model cannot fully

673

NEVILLE AND JENSEN

exploit the autocorrelation dependencies. When there is no information to anchor the predictions,
there is an identifiability problem—symmetric labelings that are highly autocorrelated, but with
opposite values, appear equally likely. In situations where there is little seed information (either
attributes or class labels), identifiability problems can increase variance and bias RDN performance
towards random.

When there is low or moderate autocorrelation, RDNRPT performance is significantly higher
than both RMNs. In these situations, poor RMN performance is likely due to a mismatch in feature
space with the data generation model—if the RMN features cannot represent the data dependencies
that are generated with aggregated features, the inferred probabilities will be biased. When there
is high autocorrelation, RDNRPT performance is indistinguishable from RMN, except when there
are no labels to seed inference—the same situation where RDNRPT fails to meet its ceiling. When
autocorrelation is high, the mismatch in feature space is not a problem. In this situation most
neighbors share similar attribute values, thus the RMN features are able to accurately capture the
data dependencies.

The data for the second set of experiments (bottom row) were generated with an RDN∗RBC. The
RDNRBC feature space is roughly comparable to the RMN because the RDNRBC uses multinomials to
model individual neighbor attribute values. On these data, RDNRBC performance is superior to RMN
performance only when there is low autocorrelation. RMNSel uses fewer features than RMN and it
has superior performance on the data with low autocorrelation, indicating that the RMN learning
algorithm may be overfitting the feature weights and producing biased probability estimates. We
experimented with a range of priors to limit the impact of weight overfitting, but the effect remained
consistent.

RDNRBC performance is superior to RBC performance only when there is moderate to high au-
tocorrelation and sufficient seed information. When autocorrelation is low, the RBC is comparable
to both the RDNceil

RBC and the RDNRBC. Even when autocorrelation is moderate or high, RBC perfor-
mance is still relatively high. Since the RBC is low-variance and there are only four attributes in our
data sets, it is not surprising that the RBC is able to exploit autocorrelation to improve performance.
What is more surprising is that RDNRBC requires substantially more seed information than RDNRPT

in order to reach ceiling performance. This indicates that our choice of model should take test-set
characteristics (e.g., number of known labels) into consideration.

To investigate Gibbs sampling convergence, we tracked AUC throughout the RDN Gibbs sam-
pling procedure. Figure 8 demonstrates AUC convergence on each inference task described above.
We selected a single learned model at random from each task and report convergence from the trials
corresponding to five different test sets. AUC improves very quickly, often leveling off within the
first 250 iterations. This shows that the approximate inference techniques employed by the RDN
may be quite efficient to use in practice. However, when autocorrelation is high, longer chains may
be necessary to ensure convergence. There are only two chains that show a substantial increase
in performance after 500 iterations and both occur in highly autocorrelated data sets. Also, the
RDNRBC chains exhibit significantly more variance than the RDNRPT chains, particularly when au-
tocorrelation is high. This may indicate that the use of longer Gibbs chains, or an approach that
averages predictions obtained from multiple random restarts, would improve performance.

674

RELATIONAL DEPENDENCY NETWORKS

Figure 8: Gibbs convergence rates for five different trials of RDNRPT (top row) and RDNRBC (bot-
tom row).

4.2 Empirical Data Experiments

We learned RDNs for five real-world relational data sets. Figure 9 depicts the objects and relations
in each data set. Section 4.2.1 illustrates the types of domain knowledge that can be learned with
the selective RDNRPT . Section 4.2.2 evaluates both the RDNRPT and the RDNRBC in a prediction
context, where the values of a single attribute are unobserved.

The first data set is drawn from Cora, a database of computer science research papers extracted
automatically from the web using machine learning techniques (McCallum et al., 1999). We se-
lected the set of 4,330 machine-learning papers along with associated authors, cited papers, and
journals. The resulting collection contains approximately 13,000 objects and 26,000 links. For
classification, we sampled the 1669 papers published between 1993 and 1998.

The second data set (Gene) is a relational data set containing information about the yeast genome
at the gene and the protein level.19 The data set contains information about 1,243 genes and 1,734
interactions among their associated proteins.

The third data set is drawn from the Internet Movie Database (IMDb).20 We collected a sample
of 1,382 movies released in the United States between 1996 and 2001, with their associated actors,
directors, and studios. In total, this sample contains approximately 42,000 objects and 61,000 links.

19. See http://www.cs.wisc.edu/∼dpage/kddcup2001/.
20. See http://www.imdb.com.

675

NEVILLE AND JENSEN

Author

Publisher

Paper

Book/
Journal

Editor

AuthoredBy AppearsIn

PublishedBy EditedBy

Cites

Studio Actor

Mov ie

Director

MadeBy ActedIn

Directed

Producer

Produced

Remake

Disclosure Branch

Broker

Regulator Firm

BelongsTo

LocatedAt

WorkedFor

FiledOn

ReportedTo

RegisteredWith

(c)(a)

(d)

Gene

(b)

(e)

Interaction

PageLinkedTo LinkedFrom

Figure 9: Data schemas for (a) Cora, (b) Gene, (c) IMDb, (d) NASD, and (e) WebkKB.

The fourth data set is from the National Association of Securities Dealers (NASD) (Neville et al.,
2005). It is drawn from NASD’s Central Registration Depository (CRD c©) system, which contains
data on approximately 3.4 million securities brokers, 360,000 branches, 25,000 firms, and 550,000
disclosure events. Disclosures record disciplinary information on brokers, including information on
civil judicial actions, customer complaints, and termination actions. Our analysis was restricted to
small and moderate-size firms with fewer than 15 brokers, each of whom has an approved NASD
registration. We selected a set of approximately 10,000 brokers who were active in the years 1997-
2001, along with 12,000 associated branches, firms, and disclosures.

The fifth data set was collected by the WebKB Project (Craven et al., 1998). The data comprise
3,877 web pages from four computer science departments. The web pages have been manually
labeled with the categories course, faculty, staff, student, research project, or other. The collection
contains approximately 8,000 hyperlinks among the pages.

4.2.1 RDN MODELS

The RDNs in Figures 10-14 continue with the RDN representation introduced in Figure 2b. Each
item type is represented by a separate plate. An arc from x to y indicates the presence of one or more
features of x in the conditional model learned for y. Arcs inside a plate represent dependencies
among the attributes of a single object. Arcs crossing plate boundaries represent dependencies
among attributes of related objects, with edge labels indicating the underlying relations. When the
dependency is on attributes of objects more than a single link away, the arc is labeled with a small
rectangle to indicate the intervening related-object type. For example, in Figure 10 paper topic is

676

RELATIONAL DEPENDENCY NETWORKS

influenced by the topics of other papers written by the paper’s authors, so the arc is labeled with two
AuthoredBy relations and a small A rectangle indicating an Author object.

In addition to dependencies among attribute values, relational learners may also learn depen-
dencies between the structure of relations (edges in GD) and attribute values. Degree relationships
are represented by a small black circle in the corner of each plate—arcs from this circle indicate a
dependency between the number of related objects and an attribute value of an object. For example,
in Figure 10 author rank is influenced by the number of paper written by the author.

For each data set, we learned an RDNRPT with queries that included all neighbors up to two
links away in the data graph. For example in Cora, when learning an RPT of a paper attribute,
we considered the attributes of associated authors and journals, as well as papers related to those
objects.

On the Cora data, we learned an RDN for seven attributes. Author rank records ordering in paper
authorship (e.g., first author, second author). Paper type records category information (e.g., PhD
thesis, technical report); topic records content information (e.g., genetic algorithms, reinforcement
learning); year and month record publication dates. Journal name-prefix records the first four title
letters (e.g., IEEE, SIAM); book-role records type information (e.g., workshop, conference).

Figure 10 shows the resulting RDN. The RDN learning algorithm selected 12 of the 139 de-
pendencies considered for inclusion in the model. Four of the attributes—author rank, paper topic,
paper type, and paper year—exhibit autocorrelation dependencies. In particular, the topic of a paper
depends not only on the topics of other papers that it cites, but also on the topics of other papers
written by the authors. This model is a good reflection of our domain knowledge about machine
learning papers.

Paper

���������	�
���

	������ � ������

Journal/
Book

������
��� ����

�������
 ��"!

Author

#�$�%
 ������

&

'

'

&

CitesCites

AuthoredBy AuthoredBy

AuthoredBy AuthoredBy

Cites

AuthoredBy AuthoredBy

AuthoredBy

AuthoredBy

AuthoredBy

AuthoredBy

AppearsIn

AppearsIn

AppearsIn

Figure 10: RDN for the Cora data set.

Exploiting these types of autocorrelation dependencies has been shown to significantly im-
prove classification accuracy of RMNs compared to RBNs, which cannot model cyclic dependen-
cies (Taskar et al., 2002). However, to exploit autocorrelation, RMNs must be instantiated with
the appropriate clique templates—to date there is no RMN algorithm for learning autocorrelation
dependencies. RDNs are the first PRM capable of learning cyclic autocorrelation dependencies.

The Gene data contain attributes associated with both objects and links (i.e., interactions). We
learned an RDN for seven attributes. Gene function records activities of the proteins encoded by

677

NEVILLE AND JENSEN

the genes; location records each protein’s localization in the cell; phenotype records characteristics
of individuals with a mutation in the gene/protein; class records the protein type (e.g., transcription
factor, protease); essential records whether the gene is crucial to an organism’s survival. Interaction
expression records the correlation between gene expression patterns for pairs of interacting genes;
type records interaction characteristics (e.g., genetic, physical).

Figure 11 shows the resulting RDN. The RDN learning algorithm selected 19 of the 77 de-
pendencies considered for inclusion in the model. In these data, all the gene attributes exhibit
autocorrelation—this is strong evidence that there are regularities among the genes whose proteins
interact in the cell.

Gene

EssentialC lass

Pheno-

ty pe
Location

 Interaction

Ty pe

Ex pres-

sion

Fu nction

InteractsWith

InteractsWith

InteractsWith InteractsWith

InteractsWith InteractsWith

Figure 11: RDN for the Gene data set.

On the IMDb data, we learned an RDN for ten discrete attributes. First-movie-year records the
date of the first movie made by a director or studio; has-award records whether a director or actor
has won an Academy award; in-US records whether a studio is located in the US; receipts records
whether a movie made more than $2 million in the opening weekend box office; genre records a
movie’s type (e.g., drama, comedy); hsx-rating records an actor’s value on the Hollywood Stock
Exchange (www.hsx.com); birth-year and gender record demographic information.

Figure 12 shows the resulting RDN. The RDN learning algorithm selected 29 of the 170 depen-
dencies considered for inclusion in the model. Again we see that four of the attributes exhibit
autocorrelation. Movie receipts and genre each exhibit a number of autocorrelation dependen-
cies (through actors, directors, and studios), which illustrates the group structure of the Hollywood
movie industry.

On the NASD data, we learned an RDN for eleven attributes. Firm size records the number
of employed stockbrokers each year; layoffs records the number of terminations each year. On-
watchlist records whether a firm or broker is under heightened supervision. Broker is-problem
and problem-in-past record whether a broker is, or has been, involved in serious misconduct; has-
business records whether a broker owns a business on the side. Disclosure type and year record
category (e.g., customer complaint) and date information regarding disciplinary events (filed on
brokers). Region and area record location information about branches.

678

RELATIONAL DEPENDENCY NETWORKS

Movie

Re c e i p t s

G e n r e

Actor

G e n d e r
H a s

A w a r d

H S X
Ra t i n g

B i r t h
Y e a r

Director

1 s t
M o v i e
Y e a r

H a s
A w a r d

D

S

A

M

Studio

1 s t
M o v i e
Y e a r

I n U S

M

M

M

M

M

DirectedDirected

Directed

ActedIn

Directed MadeBy

Directed

MadeBy
MadeBy

MadeBy

ActedIn

ActedIn

ActedIn

ActedIn

Directed

ActedIn

ActedIn

ActedIn

Directed

ActedIn

Directed

ActedInActedIn A

S MadeByMadeBy

Directed

ActedIn

MadeByMadeBy

A ActedInActedIn

S MadeByMadeBy

D DirectedDirected

Figure 12: RDN for the IMDb data set.

Figure 13 shows the resulting RDN. The RDN learning algorithm selected 32 of the 160 de-
pendencies considered for inclusion in the model. Again we see that four of the attributes exhibit
autocorrelation. Subjective inspection by NASD analysts indicates that the RDN had automati-
cally uncovered statistical relationships that confirm the intuition of domain experts. These include
temporal autocorrelation of risk (past problems are indicators of future problems) and relational au-
tocorrelation of risk among brokers at the same branch—indeed, fraud and malfeasance are usually
social phenomena, communicated and encouraged by the presence of other individuals who also
wish to commit fraud (Cortes et al., 2001). Importantly, this evaluation was facilitated by the inter-
pretability of the RDN—experts are more likely to trust, and make regular use of, models they can
understand.

On the WebKB data, we learned an RDN for four attributes. School records page location (e.g.,
Cornell, Washington); label records page type (e.g., student, course); URL-server records the first
portion of the server name following www (e.g., cs, engr); URL-text records the name of the first
directory in the URL path (e.g., UTCS, department). Figure 14 shows the resulting RDN. The RDN
learning algorithm selected 9 of the 52 dependencies considered for inclusion in the model. All of
the attributes exhibit autocorrelation in the WebKB data.

4.2.2 PREDICTION

We evaluated RDNs on prediction tasks in order to assess (1) whether autocorrelation dependencies
among instances can be used to improve model accuracy, and (2) whether the RDNs, using Gibbs
sampling, can effectively infer labels for a network of instances. To do this, we compared the same
four classes of models used in Section 4.1: conditional models, RDNs, ceiling RDNs, and RMNs.

We used the following prediction tasks: movie receipts for IMDb, paper topic for Cora, page
label for WebKB, gene location for Gene, and broker is-problem for NASD. For each data set, we
used queries that included all neighbors up to two links away in the data graph to learn RDNRBC and

679

NEVILLE AND JENSEN

Disclosure

Ye a r

T y p e

Broker (Bk)

O n

W a t c h l i s t

I s
P r o b l e m

P r o b l e m
I n P a s t

H a s

B u s i n e s s

Firm

S i z e

O n

W a t c h l i s t

L a y o f f s

 Branch (Bn)

R e g i o n

A r e a

B k

B k

B k

B n

B n

B n

B n

BelongsTo

LocatedAt

BelongsTo

BelongsTo
LocatedAt

B n

BelongsTo

LocatedAt

B n

LocatedAt

LocatedAt

LocatedAt LocatedAt

LocatedAtLocatedAt

FiledOn

FiledOn

FiledOn

FiledOn

FiledOn

B k

FiledOn

FiledOn

FiledOn

FiledOn

FiledOn

FiledOn

FiledOn

FiledOn

FiledOn

B kFiledOn
LocatedAt

BelongsTo

Figure 13: RDN for the NASD data set (1999).

Page

URL

Te x t

URL

Se r v e r

Sc h o o l La b e l LinkedFrom

LinkedToLinkedTo

LinkedTo

LinkedFrom

Figure 14: RDN for the WebKB data set.

RDNRPT models. Recall that the RDNRBC uses the entire set of attributes in the resulting subgraphs
and the RDNRPT performs feature selection over the attribute set.

Figure 15 shows AUC results for the first three model types on the five prediction tasks. (We
discuss RMN results below.) Figure 15a graphs the results of the RDNRPT , compared to the RPT
conditional model. Figure 15b graphs the results of the RDNRBC, compared to the RBC conditional
model.

The graphs show AUC for the most prevalent class, averaged over a number of training/test
splits. For Cora, IMDb, and NASD, we used temporal sampling where we learned models on one
year of data and applied the models to the subsequent year. There were four temporal samples for
IMDb and NASD, and five for Cora. For WebKB we used cross-validation by department, learning
on three departments and testing on pages from the fourth, held-out department. For Gene there
was no clear sampling choice, so we used ten-fold cross validation on random samples of genes.
When there were links between the test and training sets, the class labels of the training set were
made available to the RDNs and RMNs for use during inference. We used two-tailed, paired t-tests
to assess the significance of the AUC results obtained from the trials. The t-tests compare the RDN
results to the conditional and ceiling models, with a null hypothesis of no difference in the AUC.

680

RELATIONAL DEPENDENCY NETWORKS

Figure 15: AUC results for (a) RDNRPT and RPT, and (b) RDNRBC and RBC. Asterisks denote
model performance that is significantly different (p < 0.10) from RDNRPT and RDNRBC.

When using the RPT as the conditional learner (Figure 15a), RDN performance is superior to
RPT performance on all tasks. The difference is statistically significant for three of the five tasks.
This indicates that autocorrelation is both present in the data and identified by the RDNs. As men-
tioned previously, the RPT can sometimes use the observed attributes of related items to effectively
reason with autocorrelation dependencies. However, in some cases the observed attributes contain
little information about the class labels of related instances. This is the case for Cora—RPT per-
formance is close to random because no other attributes influence paper topic (see Figure 10). On
all tasks, the RDNs achieve comparable performance to the ceiling models. This indicates that the
RDN achieved the same level of performance as if it had access to the true labels of related objects.
We note, however, that the ceiling model only represents a probabilistic ceiling—the RDN may
perform better if an incorrect prediction for one object improves inferences about related objects.
Indeed, on a number of the data sets, RDN performance is slightly higher than that of the ceiling
model.

Similarly, when using the RBC as the conditional learner (Figure 15b), the performance of
RDNs is superior to the RBCs on all but one task and statistically significant for two of the tasks.
Notably, on the WebKB data RDN performance is worse than that of the RBC. However, the ceiling
performance is significantly higher than RBC. This indicates that autocorrelation dependencies are
identified by the RDN but the model is unable to exploit those dependencies during Gibbs sam-
pling. This effect is due to the amount of information available to seed the inference process. There
is sparse information in the attributes other than page label, and because the departments are nearly
disjoint, there are few labeled instances before inference. This leaves the RDN with little infor-
mation to anchor its predictions, which results in marginal predictions closer to random. Similar
behavior appeared in the synthetic data experiments, indicating that the RDNRBC may need more
information to seed the inference process.

681

NEVILLE AND JENSEN

Num RDN Num selected Num RMN Num RMNSel

attributes RDN attributes features features

Cora 22 2.0 1029 98.0
Gene 19 3.1 3640 606.0

IMDb 15 5.0 234 90.5
NASD 16 5.7 526 341.5

WebKB 34 5.0 2478 270.0

Table 3: Number of attributes/features used by RDNs and RMNs.

The RDNRBC achieves comparable performance to the ceiling models on only two of the five
tasks. This may be another indication that RDNs combined with a non-selective conditional learner
(e.g., RBCs) will experience increased variance during the Gibbs sampling process, and thus they
may need more seed information during inference to achieve the near-ceiling performance. We
should note that although the RDNRBC does not significantly outperform the RDNRPT on any of the
tasks, the RDNCeil

RBC is significantly higher than RDNCeil
RPT for Cora and IMDb. This indicates that,

when there is enough seed information, the RDNRBC may achieve significant performance gains
over the RDNRPT .

Due to time and memory constraints, we were unable to learn RMNs for all but two of the real-
data experiments. Table 3 reports information for each data set—the number of attributes available
to the RDNs, the average number of attributes selected by the RDNs, and the number of features
constructed by the RMN and the RMNSel . Recall that the RMN constructs its features from all the
attributes available to the RDN and the RMNSel constructs its features from the attributes selected
by the RDN. Due to the size of the feature spaces considered by the non-selective RMN, we were
unable learn models for any of the data sets. We were able to successfully learn an RMNSel for
the Cora and IMDb data sets. The average AUC of the RMNSel was 74.4% for Cora and 60.9%
for IMDb. This is far below the RDN results reported in Figure 15. Note that previous RMN
results (Taskar et al., 2002) report accuracy of the most likely labeling for the entire data set. In
contrast, we are evaluating AUC of the marginal probabilities for each instance (inferred jointly).
This may indicate that RMN inference will produce biased (marginal) probability estimates when
run in a “loopy” relational network, due to overfitting the clique weights. When skewed weights are
applied to collectively infer the labels throughout the test set, the inference process may converge to
extreme labelings (e.g., all positive labels in some regions of the graph, all negative labels in other
regions), which would bias probability estimates for many of the instances.

5. Related Work

There are three types of statistical relational models relevant to RDNs: probabilistic relational mod-
els, probabilistic logic models, and collective inference models. We discuss each of these below.

5.1 Probabilistic Relational Models

Probabilistic relational models are one class of models for density estimation in relational data sets.
Examples of PRMs include relational Bayesian networks and relational Markov networks.

682

RELATIONAL DEPENDENCY NETWORKS

As outlined in Section 3.1, learning and inference in PRMs involve a data graph GD, a model
graph GM, and an inference graph GI . All PRMs model data that can be represented as a graph
(i.e., GD). PRMs use different approximation techniques for inference in GI (e.g., Gibbs sampling,
loopy belief propagation), but they all use a similar process for rolling out an inference graph GI .
Consequently, PRMs differ primarily with respect to the representation of the model graph GM and
how that model is learned.

An RBN for X uses a directed model graph GM = (VM,EM) and a set of conditional probability
distributions P to represent a joint distribution over X. Each node v ∈ VM corresponds to an X t

k ∈
X. The set P contains a conditional probability distribution for each variable given its parents,
p(xt

k|paxt
k
). Given (GM,P), the joint probability for a set of values x is computed as a product over

the item types T , the attributes of that type X t , and the items of that type v,e:

p(x) = ∏
t∈T

∏
X t

i ∈X t
∏

v:T (v)=t

p(xt
vi|paxt

vi
) ∏

e:T (e)=t

p(xt
ei|paxt

ei
).

The RBN learning algorithm (Getoor et al., 2001) for the most part uses standard Bayesian
network techniques for parameter estimation and structure learning. One notable exception is that
the learning algorithm must check for “legal” structures that are guaranteed to be acyclic when
rolled out for inference on arbitrary data graphs. In addition, instead of exhaustive search of the
space of relational dependencies, the structure learning algorithm uses greedy iterative-deepening,
expanding the search in directions where the dependencies improve the likelihood.

The strengths of RBNs include understandable knowledge representations and efficient learn-
ing techniques. For relational tasks, with a huge space of possible dependencies, selective models
are easier to interpret and understand than non-selective models. Closed-form parameter estimation
techniques allow for efficient structure learning (i.e., feature selection). Also, because reasoning
with relational models requires more space and computational resources, efficient learning tech-
niques make relational modeling both practical and feasible.

The directed acyclic graph structure is the underlying reason for the efficiency of RBN learning.
As mentioned in Section 1, the acyclicity requirement precludes the learning of arbitrary autocor-
relation dependencies and limits the applicability of these models in relational domains. The PRM
representation, which ties parameters across items of the same type, makes it difficult for RBNs to
represent autocorrelation dependencies. Because autocorrelation is a dependency among the value
of the same variable on linked items of the same type, the CPDs that represent autocorrelation will
produce cycles in the rolled out inference graph. For example, when modeling the autocorrelation
among the topics of two hyperlinked web pages P1 and P2, the CPD for the topic of P1 will have
the topic of P2 as a parent and vice versa. In general, unless there is causal knowledge of how to
structure the order of autocorrelation dependencies (e.g., parents’ genes will never be influenced by
the genes of their children), it is impossible to tie the parameters and still guarantee an acyclic graph
after roll out. Note that this is not a problem for undirected models such as RMNs or RDNs. Thus,
RDNs enjoy the strengths of RBNs (namely, understandable knowledge representation and efficient
learning) without being constrained by an acyclicity requirement.

An RMN for X uses a undirected model graph UM = (VM,EM) and a set of potential functions Φ
to represent a joint distribution over X. Again each node v ∈VM corresponds to an X t

k ∈ X. RMNs
use relational clique templates CT to specify the ways in which cliques are defined in UM . Cliques
templates are defined over a set of item types, a boolean constraint on how the types must relate to
each other in the data graph, and a set of attributes to consider on the matching items. Let C(CT)

683

NEVILLE AND JENSEN

be the set of cliques in the graph UM that match a specific clique template C ∈CT . As with Markov
networks, each clique c ∈ C(CT) is associated with a set of variables Xc and a clique potential
φc(xc). Given (UM,Φ), the joint probability for a set of values x is computed as a product over the
clique templates in CT and the matches to the clique template c:

p(x) =
1
Z ∏

Ci∈CT
∏

c j∈C(Ci)

φc j(xc j).

The RMN learning algorithm (Taskar et al., 2002) uses maximum-a-posteriori parameter estima-
tion with Gaussian priors, modifying Markov network learning techniques. The algorithm assumes
that the clique templates are pre-specified and thus does not search for the best structure. Because
the user supplies a set of relational dependencies to consider (i.e., clique templates), it simply opti-
mizes the potential functions for the specified templates.

RMNs are not hampered by an acyclicity constraint, so they can represent and reason with
arbitrary forms of autocorrelation. This is particularly important for reasoning in relational data
sets where autocorrelation dependencies are nearly ubiquitous and often cannot be structured in an
acyclic manner. However, the tradeoff for this increased representational capability is a decrease in
learning efficiency. Instead of closed-form parameter estimation, RMNs are trained with conjugate
gradient methods, where each iteration requires a round of inference. In large cyclic relational infer-
ence graphs, the cost of inference is prohibitively expensive—in particular, without approximations
to increase efficiency, feature selection is intractable.

Similar to the comparison with RBNs, RDNs enjoy the strengths of RMNs but not their weak-
nesses. More specifically, RDNs are able to reason with arbitrary forms of autocorrelation without
being limited by efficiency concerns during learning. In fact, the pseudolikelihood estimation tech-
nique used by RDNs has been used recently to make feature selection tractable for conditional
random fields (McCallum, 2003) and Markov logic networks (Kok and Domingos, 2005).

5.2 Probabilistic Logic Models

A second class of models for density estimation consists of extensions to conventional logic pro-
gramming that support probabilistic reasoning in first-order logic environments. We will refer to
this class of models as probabilistic logic models (PLMs). Examples of PLMs include Bayesian
logic programs (Kersting and Raedt, 2002) and Markov logic networks (Richardson and Domingos,
2006).

PLMs represent a joint probability distribution over the ground atoms of a first-order knowledge
base. The first-order knowledge base contains a set of first-order formulae, and the PLM associates
a set of weights/probabilities with each of the formulae. Combined with a set of constants represent-
ing objects in the domain, PLMs specify a probability distribution over possible truth assignments
to ground atoms of the first-order formulae. Learning a PLM consists of two tasks: generating the
relevant first-order clauses, and estimating the weights/probabilities associated with each clause.

Within this class of models, Markov logic networks (MLNs) are most similar in nature to RDNs.
In MLNs, each node is a grounding of a predicate in a first-order knowledge base, and features
correspond to first-order formulae and their truth values. An MLN, unrolled over a set of objects in
the domain, specifies an undirected Markov network. In this sense, they share the same strengths
and weaknesses as RMNs—they are capable of representing cyclic autocorrelation relationships but
suffer from decreased efficiency if full joint estimation is used during learning.

684

RELATIONAL DEPENDENCY NETWORKS

Recent work on structure learning for MLNs (Kok and Domingos, 2005) has investigated the use
of pseudolikelihood to increase learning efficiency. The MLN structure learning algorithm restricts
the search space by limiting the number of distinct variables in a clause, and then uses beam search,
with a weighted pseudolikelihood scoring function, to find the best clauses to add to the network.

Although both RDNs and MLNs use pseudolikelihood techniques to learn model structures effi-
ciently, they each employ a different representational formalism. In particular, MLNs use weighted
logic formulae while RDNs use aggregate features in CPDs. Our future work will investigate the
performance tradeoffs between RDN and MLN representations when combined with pseudolikeli-
hood estimation.

5.3 Collective Inference

Collective inference models exploit autocorrelation dependencies in a network of objects to improve
predictions. Joint relational models, such as those discussed above, are able to exploit autocorre-
lation to improve predictions by estimating joint probability distributions over the entire graph and
collectively inferring the labels of related instances.

An alternative approach to collective inference combines local individual classification models
(e.g., RBCs) with a joint inference procedure (e.g., relaxation labeling). Examples of this technique
include iterative classification (Neville and Jensen, 2000), link-based classification (Lu and Getoor,
2003), and probabilistic relational neighbor models (Macskassy and Provost, 2003, 2004). These
approaches to collective inference were developed in an ad hoc procedural fashion, motivated by the
observation that they appear to work well in practice. RDNs formalize this approach in a principled
framework—learning models locally (maximizing pseudolikelihood) and combining them with a
global inference procedure (Gibbs sampling) to recover a full joint distribution. In this work we
have demonstrated that autocorrelation is the reason behind improved performance in collective
inference (see Jensen et al., 2004, for more detail) and explored the situations under which we can
expect this type of approximation to perform well.

6. Discussion and Future Work

In this paper, we presented relational dependency networks, a new form of probabilistic relational
model. We showed the RDN learning algorithm to be a relatively simple method for learning the
structure and parameters of a probabilistic graphical model. In addition, RDNs allow us to exploit
existing techniques for learning conditional probability distributions of relational data sets. Here we
have chosen to exploit our prior work on RPTs, which construct parsimonious models of relational
data, and RBCs, which are simple and surprisingly effective non-selective models. We expect the
general properties of RDNs to be retained if other approaches to learning conditional probability
distributions are used, given that those approaches learn accurate local models.

The primary advantage of RDNs is the ability to efficiently learn and reason with autocorrela-
tion. Autocorrelation is a nearly ubiquitous phenomenon in relational data sets and the resulting
dependencies are often cyclic in nature. If a data set exhibits autocorrelation, an RDN can learn
the associated dependencies and then exploit those dependencies to improve overall inferences by
collectively inferring values for the entire set of instances simultaneously. The real and synthetic
data experiments in this paper show that collective inference with RDNs can offer significant im-
provement over conditional approaches when autocorrelation is present in the data. Except in rare
cases, the performance of RDNs approaches the performance that would be possible if all the class

685

NEVILLE AND JENSEN

labels of related instances were known. Furthermore, our experiments show that inference with
RDNs is comparable, or superior, to RMN inference over a range of conditions, which indicates
that pseudolikelihood estimation can be used effectively to learn an approximation of the full joint
distribution.

We also presented learned RDNs for a number of real-world relational domains, demonstrating
another strength of RDNs—their understandable and intuitive knowledge representation. Compre-
hensible models are a cornerstone of the knowledge discovery process, which seeks to identify
novel and interesting patterns in large data sets. Domain experts are more willing to trust, and make
regular use of, understandable models—particularly when the induced models are used to support
additional reasoning. Understandable models also aid analysts’ assessment of the utility of the ad-
ditional relational information, potentially reducing the cost of information gathering and storage
and the need for data transfer among organizations—increasing the practicality and feasibility of
relational modeling.

Future work will compare RDNs to Markov logic networks in order to evaluate the performance
tradeoffs for using pseudolikelihood approximations with different relational representations. Also,
because our analysis indicates that each model reacts differently to the amount of seed information
and level of autocorrelation, future work will attempt to quantify these effects on performance more
formally. In particular, we are developing a bias/variance framework to decompose model errors
into components of both the learning and inference processes (Neville and Jensen, 2006). Conven-
tional bias/variance analysis is a useful tool for investigating the performance of machine learning
algorithms, but it decomposes loss into errors due to aspects of the learning process alone. In re-
lational and network applications, the collective inference process introduces an additional source
of error—both through the use of approximate inference algorithms and through variation in the
availability of test set information. Our framework can be used to evaluate hypotheses regarding the
mechanisms behind poor model performance (e.g., identifiability problems increase RDN variance)
and investigate algorithmic modifications designed to improve model performance.

Acknowledgments

The authors acknowledge the invaluable assistance of A. Shapira, as well as helpful comments from
C. Loiselle and two anonymous reviewers.

This effort is supported by DARPA and NSF under contract numbers IIS0326249 and HR0011-
04-1-0013. The U.S. Government is authorized to reproduce and distribute reprints for governmen-
tal purposes notwithstanding any copyright notation hereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements either expressed or implied of DARPA, NSF, or the U.S. Government.

Appendix A. Synthetic Data Generation Models

We detail the manually specified conditional models used in Section 4.1. Specifically, there are
three RBC and three RPT models. Each one is designed to generate data with low, medium, or high
levels of autocorrelation (0.25, 0.50, 0.75).

686

RELATIONAL DEPENDENCY NETWORKS

RBC := p(X1|X1R,X2) ∝ ∏
R

p(X1R|X1) · p(X2|X1).

RBC0.25 : p(X1R|X1) := p(X1R =1|X1 =1) = p(X1R =0|X1 =0) = 0.5625,

p(X2|X1) := p(X2 =1|X1 =1) = p(X2 =0|X1 =0) = 0.75.

RBC0.50 : p(X1R|X1) := p(X1R =1|X1 =1) = p(X1R =0|X1 =0) = 0.6250,

p(X2|X1) := p(X2 =1|X1 =1) = p(X2 =0|X1 =0) = 0.75.

RBC0.75 : p(X1R|X1) := p(X1R =1|X1 =1) = p(X1R =0|X1 =0) = 0.6875

p(X2|X1) := p(X2 =1|X1 =1) = p(X2 =0|X1 =0) = 0.75.

Figure 16: RPT0.25 model used for synthetic data generation with low autocorrelation.

687

NEVILLE AND JENSEN

Figure 17: RPT0.50 model used for synthetic data generation with medium autocorrelation.

Figure 18: RPT0.75 model used for synthetic data generation with high autocorrelation levels.

688

RELATIONAL DEPENDENCY NETWORKS

References

A. Bernstein, S. Clearwater, and F. Provost. The relational vector-space model and industry clas-
sification. In Proceedings of the IJCAI-2003 Workshop on Learning Statistical Models from
Relational Data, pages 8–18, 2003.

J. Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal
Statistical Society, Series B, 36(2):192–236, 1974.

J. Besag. Statistical analysis of non-lattice data. The Statistician, 24(3):179–195, 1975.

H. Blau, N. Immerman, and D. Jensen. A visual query language for relational knowledge discovery.
Technical Report 01-28, University of Massachusetts Amherst, Computer Science Department,
2001.

G. Casella and R. Berger. Statistical Inference. Duxbury, 2002.

S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext categorization using hyperlinks. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, pages
307–318, 1998.

F. Comets. On consistency of a class of estimators for exponential families of Markov random fields
on the lattice. The Annals of Statistics, 20(1):455–468, 1992.

C. Cortes, D. Pregibon, and C. Volinsky. Communities of interest. In Proceedings of the 4th
International Symposium of Intelligent Data Analysis, pages 105–114, 2001.

M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and S. Slattery. Learning
to extract symbolic knowledge from the World Wide Web. In Proceedings of the 15th National
Conference on Artificial Intelligence, pages 509–516, 1998.

P. Domingos and M. Richardson. Mining the network value of customers. In Proceedings of the
7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
57–66, 2001.

T. Fawcett and F. Provost. Adaptive fraud detection. Data Mining and Knowledge Discovery, 1(3):
291–316, 1997.

P. Flach and N. Lachiche. 1BC: A first-order Bayesian classifier. In Proceedings of the 9th Interna-
tional Conference on Inductive Logic Programming, pages 92–103, 1999.

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational models. In
Proceedings of the 16th International Joint Conference on Artificial Intelligence, pages 1300–
1309, 1999.

S. Geman and C. Graffine. Markov random field image models and their applications to computer
vision. In Proceedings of the 1986 International Congress of Mathematicians, pages 1496–1517,
1987.

L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning probabilistic relational models. In
Relational Data Mining, pages 307–335. Springer-Verlag, 2001.

689

NEVILLE AND JENSEN

B. Gidas. Consistency of maximum likelihood and pseudolikelihood estimators for Gibbs distri-
butions. In Proceedings of the Workshop on Stochastic Differential Systems with Applications
in Electrical/Computer Engineering, Control Theory, and Operations Research, pages 129–145,
1986.

D. Heckerman, D. Chickering, C. Meek, R. Rounthwaite, and C. Kadie. Dependency networks for
inference, collaborative filtering and data visualization. Journal of Machine Learning Research,
1:49–75, 2000.

D. Heckerman, C. Meek, and D. Koller. Probabilistic models for relational data. Technical Report
MSR-TR-2004-30, Microsoft Research, 2004.

S. Hill, F. Provost, and C. Volinsky. Network-based marketing: Identifying likely adopters via
consumer networks. Statistical Science, 22(2), 2006.

M. Jaeger. Relational Bayesian networks. In Proceedings of the 13th Conference on Uncertainty in
Artificial Intelligence, pages 266–273, 1997.

D. Jensen and J. Neville. Linkage and autocorrelation cause feature selection bias in relational
learning. In Proceedings of the 19th International Conference on Machine Learning, pages 259–
266, 2002.

D. Jensen and J. Neville. Avoiding bias when aggregating relational data with degree disparity. In
Proceedings of the 20th International Conference on Machine Learning, pages 274–281, 2003.

D. Jensen, J. Neville, and B. Gallagher. Why collective inference improves relational classification.
In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 593–598, 2004.

K. Kersting. Representational power of probabilistic-logical models: From upgrading to downgrad-
ing. In IJCAI-2003 Workshop on Learning Statistical Models from Relational Data, pages 61–62,
2003.

K. Kersting and L. De Raedt. Basic principles of learning Bayesian logic programs. Technical
Report 174, Institute for Computer Science, University of Freiburg, 2002.

S. Kok and P. Domingos. Learning the structure of Markov logic networks. In Proceedings of the
22nd International Conference on Machine Learning, pages 441–448, 2005.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In Proceedings of the 18th International Conference on
Machine Learning, pages 282–289, 2001.

S. Lauritzen and N. Sheehan. Graphical models for genetic analyses. Statistical Science, 18(4):
489–514, 2003.

E. Lehmann and G. Casella. Theory of Point Estimation. Springer-Verlag, New York, 1998.

Q. Lu and L. Getoor. Link-based classification. In Proceedings of the 20th International Conference
on Machine Learning, pages 496–503, 2003.

690

RELATIONAL DEPENDENCY NETWORKS

S. Macskassy and F. Provost. A simple relational classifier. In Proceedings of the 2nd Workshop on
Multi-Relational Data Mining, KDD2003, pages 64–76, 2003.

S. Macskassy and F. Provost. Classification in networked data: A toolkit and a univariate case study.
Technical Report CeDER-04-08, Stern School of Business, New York University, 2004.

A. McCallum. Efficiently inducing features of conditional random fields. In Proceedings of the
19th Conference on Uncertainty in Artificial Intelligence, pages 403–410, 2003.

A. McCallum, K. Nigam, J. Rennie, and K. Seymore. A machine learning approach to building
domain-specific search engines. In Proceedings of the 16th International Joint Conference on
Artificial Intelligence, pages 662–667, 1999.

K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for approximate inference: An
empirical study. In Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence,
pages 467–479, 1999.

R. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-
TR-93-1, Dept of Computer Science, University of Toronto, 1993.

J. Neville, O. Şimşek, D. Jensen, J. Komoroske, K. Palmer, and H. Goldberg. Using relational
knowledge discovery to prevent securities fraud. In Proceedings of the 11th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 449–458, 2005.

J. Neville and D. Jensen. Iterative classification in relational data. In Proceedings of the Workshop
on Statistical Relational Learning, 17th National Conference on Artificial Intelligence, pages
42–49, 2000.

J. Neville and D. Jensen. Supporting relational knowledge discovery: Lessons in architecture and
algorithm design. In Proceedings of the Data Mining Lessons Learned Workshop, ICML2002,
pages 57–64, 2002.

J. Neville and D. Jensen. Collective classification with relational dependency networks. In Proceed-
ings of the 2nd Multi-Relational Data Mining Workshop, KDD2003, pages 77–91, 2003.

J. Neville and D. Jensen. Dependency networks for relational data. In Proceedings of the 4th IEEE
International Conference on Data Mining, pages 170–177, 2004.

J. Neville and D. Jensen. Bias/variance analysis for network data. In Proceedings of the Workshop
on Statistical Relational Learning, 23rd International Conference on Machine Learning, 2006.

J. Neville, D. Jensen, L. Friedland, and M. Hay. Learning relational probability trees. In Proceedings
of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 625–630, 2003a.

J. Neville, D. Jensen, and B. Gallagher. Simple estimators for relational Bayesian classifers. In
Proceedings of the 3rd IEEE International Conference on Data Mining, pages 609–612, 2003b.

C. Perlich and F. Provost. Aggregation-based feature invention and relational concept classes. In
Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 167–176, 2003.

691

NEVILLE AND JENSEN

A. Popescul, L. Ungar, S. Lawrence, and D. Pennock. Statistical relational learning for document
mining. In Proceedings of the 3rd IEEE International Conference on Data Mining, pages 275–
282, 2003.

M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62:107–136, 2006.

S. Sanghai, P. Domingos, and D. Weld. Dynamic probabilistic relational models. In Proceedings of
the 18th International Joint Conference on Artificial Intelligence, pages 992–1002, 2003.

B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models for relational data. In
Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence, pages 485–492,
2002.

B. Taskar, E. Segal, and D. Koller. Probabilistic classification and clustering in relational data. In
Proceedings of the 17th International Joint Conference on Artificial Intelligence, pages 870–878,
2001.

H. White. Estimation, Inference and Specification Analysis. Cambridge University Press, New
York, 1994.

B. Zadrozny and C. Elkan. Obtaining calibrated probability estimates from decision trees and naive
Bayesian classifiers. In Proceedings of the 18th International Conference on Machine Learning,
pages 609–616, 2001.

692

