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Abstract
The presence of autocorrelation provides a strong mo-

tivation for using relational learning and inference tech-
niques. Autocorrelation is a statistical dependence between
the values of the same variable on related entities and is
a nearly ubiquitous characteristic of relational data sets.
Recent research has explored the use of collective infer-
ence techniques to exploit this phenomenon. These tech-
niques achieve significant performance gains by model-
ing observed correlations among class labels of related in-
stances, but the models fail to capture a frequent cause of
autocorrelation—the presence of underlying groups that in-
fluence the attributes on a set of entities. We propose a
latent group model (LGM) for relational data, which dis-
covers and exploits the hidden structures responsible for
the observed autocorrelation among class labels. Modeling
the latent group structure improves model performance, in-
creases inference efficiency, and enhances our understand-
ing of the datasets. We evaluate performance on three rela-
tional classification tasks and show that LGM outperforms
models that ignore latent group structure, particularly when
there is little information with which to seed inference.

1. Introduction
Autocorrelation is a statistical dependence between the

values of the same variable on related entities, which is a
nearly ubiquitous characteristic of relational datasets. For
example, hyperlinked web pages are more likely to share the
same topic than randomly selected pages [23], and movies
made by the same studio are more likely to have similar
box-office returns than randomly selected movies [6]. More
formally, autocorrelation is defined with respect to a set of
related instance pairs PR = {(oi, oj) : oi, oj ∈ O}; it is
the correlation between the values of a variable X on the
instance pairs, (xi, xj) s.t. (oi, oj) ∈ PR.
The presence of autocorrelation offers a unique oppor-

tunity to improve model performance, as autocorrelation
enables inferences about one object to be used to im-
prove inferences about related objects. Indeed, recent work

in relational domains has shown that collective inference
over an entire dataset results in more accurate predictions
than conditional inference over each instance independently
(e.g., [2, 23, 15]) and that the gains over conditional models
increase as autocorrelation increases [7].
Collective models improve classification performance by

explicitly representing the autocorrelation dependencies in
relational datasets. However, this approach has a number
of weaknesses. First, the models do not attempt to dis-
cover the true cause of the autocorrelation, which may im-
pair model interpretability and lead to poor domain under-
standing. Second, during learning the models restrict their
attention to dependencies among instances that are closely
linked in the data. Modeling the dependencies among more
distant neighbors (e.g., [5]) may improve performance by
allowing information to propagate in a more elaborate man-
ner during inference. Finally, the models require inference
over large, and often cyclic, graphical models, which ne-
cessitates the use of computationally complex, approximate
inference techniques.
Current collective models, which model autocorrelation

dependencies explicitly, fail to capture a frequent cause of
autocorrelation—the presence of underlying groups, condi-
tions, or events that influence the attributes on a set of enti-
ties. For example, in the cinematic domain, it is likely that
studios cause the observed autocorrelation among movie re-
turns. Movie-goers are unlikely to choose movies based
on the returns of other movies from the same studio. It is
more likely that movie returns are influenced by some un-
observed properties of the studio (e.g., advertising budget).
In this case, the class labels of movies may be condition-
ally independent given studio type (e.g., high-budget stu-
dio). Similarly, in the World Wide Web it is likely that web
communities—groups of hyperlinked pages that share simi-
lar topics—cause the observed autocorrelation among page
topics. In this case, we can not directly observe which com-
munity a web page belongs to, but it is likely that page topic
is influenced by properties of the community (e.g., research
groups contain student, faculty, and project pages), rather
than the specific topics of hyperlinked pages. Models that



represent the underlying group structure and the correlation
between group properties and member attributes should be
able to express the joint distribution more accurately than
approaches that only model the observed autocorrelation.
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Figure 1. Types of relational group structures.

Figure 1 depicts two potentials causes of observed auto-
correlation. First, consider the task of predicting movie box
office returns given data from the Internet Movie Database
(IMDb). Figure 1a depicts an example fragment of the
IMDb database, which contains studios, movies, and ac-
tors. There are four studios, each with a different number
of movies, and each movie has a number of actors. Movie
labels to indicate whether they made more than $2 million
in opening-weekend box-office returns.
Returns are correlated among movies made by the same

studio—high-grossing movies are clustered at the top-left
and bottom-right of the graph. When such autocorrelation is
present, the inferences about one movie can be used to im-
prove the inferences about other movies made by the same
studio. However, the properties of the studio may be the
true cause of the observed autocorrelation and the returns of
individual movies may be conditionally independent given
studio identity and type. In this example, the studio object
is a coordinating object that connects the group members
(movies), and group type may indicate whether the studio
is a high-budget studio or a small art-house studio.
Another example of underlying group structure is illus-

trated in figure 1b with an example fragment from the Web,
where the objects are web pages and the links are hyper-
links among the pages. The pages are labeled according to
a binary topic variable, which also exhibits autocorrelation.
Again, the autocorrelation may be explained by the under-
lying group structure. In this case there are no coordinating
objects that serve to connect the group members. Instead,
the community groups can be identified by the pattern of
linkage among the pages—the pages within a community
are more likely to link to each other than pages in different
communities. In this example, group type may indicate the
primary interests of the community (e.g., alternative energy

sites point to pages on solar and wind power).
In this paper, we propose a latent group model (LGM) to

incorporate groups and their properties into a model of re-
lational data. LGM is a joint model of links, attributes, and
groups for unipartite relational graphs, which addresses the
weaknesses of current collective models discussed above.
LGMs recover the underlying groups and identify their as-
sociated density functions. This attempt to model the true
cause of autocorrelation will improve domain understand-
ing and motivate development of additional modeling tech-
niques. Group models are also a natural way to allow more
elaborate information propagation during inference with-
out fully representing the O(N2) dependencies between all
pairs of instances. Finally, in LGM models the objects are
conditionally independent given the underlying group struc-
ture, so efficient exact inference techniques are applicable.
Our initial evaluation of LGMs is on out-of-sample clas-

sification tasks, where the test set is nearly disjoint from the
training set. This is in contrast to recent work on in-sample
classification [19] where the test set links back into the
training set and it is possible to improve performance with-
out generalizing about group properties. When the test set
is nearly disjoint, it is necessary to both identify groups and
generalize about their latent properties. More specifically,
we will learn LGMs on training sets where the object at-
tributes and links are observed but group structure and prop-
erties are unobserved. The learned models will then be used
to classify instances in nearly disjoint test sets, where object
class labels, group structure, and group properties are all un-
observed. This approach is suited for domains with large,
nearly disconnected graph structures and domains with dy-
namic graph structure, where groups emerge and disband
over time. For example, in gene prediction tasks, models of
proteins and how they interact to perform certain functions
in the cell can be learned in one genome and then applied to
classify proteins in new genomes. Also, in fraud detection
tasks, which analyze a single dataset that is evolving over
time, LGMs could be used to detect group formation and
use a few hand-labeled examples to seed inference about
the classifications of new group members.
In the remainder of the paper, we outline LGM, our ini-

tial algorithms for learning and inference, and related work
in statistical relational learning. We present empirical eval-
uation on three classification tasks to demonstrate the ca-
pabilities of the model, showing that LGMs perform bet-
ter than models that ignore latent groups, particularly when
there is little known information with which to seed infer-
ence. Finally, we conclude with directions for future work.

2. Latent Group Models
Latent group models (LGMs) specify a generative proba-

bilistic model of the attributes, links, and group structures in
a relational dataset. The model posits that the data contains



different types of groups of objects. Membership in these
groups influences the observed attributes of objects, as well
as the existence of relationships (links) among objects.
For this initial investigation of LGMs, we make several

simplifying assumptions about the data. Specifically, we as-
sume a unipartite relational data graph (single object type)
with binary, undirected links, and at most one link between
any pair of objects. We also assume the number of objects,
groups, and group types are fixed and known. However, it
is relatively straightforward to extend the model to accom-
modate deviations from these assumptions.
The model assumes the following generative process for

a dataset with NO objects and NG groups:
1. For each group g, 1 ≤ g ≤ NG:

(a) Choose a value for group type tg from p(T ), a multi-
nomial probability with k values.

2. For each object i, 1 ≤ i ≤ NO:

(a) Choose a group gi uniformly from the range [1, NG].
(b) Choose a class value ci from p(C|TGi), a multinomial

probability conditioned on the object’s group type tgi .
(c) For each attribute A ∈ AM:

i. Choose a value for ai from p(A|C), conditioned
on the object’s class label ci.

3. For each object j, 1 ≤ j ≤ NO:

(a) For each object k, j < k ≤ NO:
i. Choose an edge value ejk from p(E|Gj =

Gk, TGj , TGk ), a Bernoulli probability condi-
tioned on the two objects’ group types and
whether they are in the same group.

This generative model specifies that attribute values and
link existence are conditionally independent given group
membership and type. More specifically, the class labels
of objects are conditionally independent. The joint distri-
bution of a dataset D, with NG groups, L links, and NO

objects, each withM attributes and class label C, is:
p(D) =

Y

g∈NG

p(tg)
Y

i∈NO

p(ci|tgi)
Y

A∈AM

p(ai|ci) ·
Y

ljk∈L

p(ejk=1|gj=gk, tgj , tgk )
Y

ljk /∈L

p(ejk=0|gj=gk, tgj , tgk )

Figure 2 depicts the the graphical model representation
of an LGM model. The template consists of four plates,
which represent replicates of groups, objects, attributes, and
potential binary links among objects. Groups each have
a type attribute T . Objects have a group membership G,
a class label C, and attributes A1, ..., AM . E is a binary
variable indicating link existence among all

(NO

2

)
pairs of

objects. The conditions on the arcs constrain the manner
in which the model is rolled out for inference1—each E is

1We use contingent Bayesian network [14] notation to denote context-
specific independence.

influenced by two G and two T variables and each C is in-
fluenced by a single T variable in the unrolled Bayes net.
The LGM model is a form of probabilistic relational model
(PRM) [4] that combines a relational Bayesian network,
link existence uncertainty, and hierarchical latent variables.
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Figure 2. LGM graphical representation.

2.1. Learning
There are two steps to incorporating groups and their

properties into a relational model. First, we need to detect
the underlying group structure. When the groups are iden-
tified by a coordinating object (e.g., studio), detection is a
relatively easy task—we can identify groups through high
degree nodes and their immediate neighbors. When groups
consist of communities, group detection is more difficult.
However, if intra-community links are more frequent than
inter-community links, the existing relations can be used as
evidence of the underlying community structure, and mem-
bership can be inferred from the patterns of relations.
Second, we need to infer latent group types and model

their influence on the attributes of group members. When
the groups are observed, we can infer the latent types
with a relatively simple application of the expectation-
maximization (EM) algorithm. A similar approach is used
in information retrieval where latent-unigram models repre-
sent each document as a group of word occurrences2 that are
conditionally independent given the document’s topic [1].
When group membership is unobserved, the group bound-
aries and properties must be jointly inferred from the ob-
served relations and attributes. To continue the document
retrieval metaphor, it is as if we have word occurrence in-
formation (attribute values) and noisy indicators of word
co-occurrence within documents (link information), but we
do not know the document boundaries or the topic distribu-
tions.
When learning an LGM model, both group membership

G and group type T are unobserved. Ideally, we could
learn the model using a straightforward application of the
EM algorithm—iterating between inferring the latent vari-
ables (E-step) and estimating the parameters (M-step). Un-

2However, the “vocabulary” is much smaller in relational domains—
generally < 10 class values, compared to thousands of unique words.



fortunately, there are difficulties with this approach. First,
there are NO latent group variables, each with NG possi-
ble values, and NG latent type variables, each with k pos-
sible values. When the average group size is small (i.e.,
NG =O(NO)), we expect that EM will be very sensitive to
the start state. Furthermore, when group membership is un-
known, each of the C and E variables depends on all the T
variables—there is no longer context-specific independence
to exploit and the E-step will require inference over a large,
complex, rolled-out Bayes net where objects’ group mem-
berships are all interdependent given the link observations.
Exact inference in this situation is impractical. Although
approximate inference techniques (e.g., loopy belief propa-
gation) may allow accurate inference, given the number of
latent variables and their dependency on sparse link infor-
mation (L"

(NO

2

)
), we expect that EM will not converge to

a reasonable solution due to many local (suboptimal) max-
ima in the likelihood function.
Our learning algorithm is motivated by the observation

that collective models improve performance by propagating
information only on existing links. This indicates that auto-
correlated groups should have more intra-group links than
inter-group links. We exploit this characteristic to decouple
the group discovery from the remainder of the estimation
process and propose the following approximate learning al-
gorithm:
1. Hypothesize group membership for objects based on the ob-
served link structure alone.

2. Use EM to infer group types and estimate the remaining pa-
rameters of the model.

A hard clustering approach in the 1st step, which assigns
each object to a single group, greatly simplifies the estima-
tion problem in the 2nd step—we only need to estimate the
latent group type variables and parameters of p(T ), p(C|T ),
and p(A|C). To this end, we employ a recursive spectral
decomposition algorithm with a norm-cut objective func-
tion [20] to cluster the objects into groups with high intra-
group and low inter-group linkage.
Spectral clustering techniques partition data into disjoint

clusters using the eigenstructure of a similarity matrix. We
use the divisive, hierarchical clustering algorithm of [20]
on the relational graph formed by the links in the data. The
algorithm recursively partitions the graph as follows: Let
EN×N = [E(i, j)] be the adjacency matrix and let D be
an N×N diagonal matrix with di =

∑
j∈V E(i, j). Solve

the eigensystem (D − E)x = λDx for the eigenvector x1

associated with the 2nd smallest eigenvalue λ1. Consider
m uniform values between the minimum and maximum
value in x1. For each value m: bipartition the nodes into
(A,B) such that ∀va∈A x1a<m, and calculate the NCut
value for the partition, NCut(A,B) =

P
i∈A,j∈B E(i,j)P

i∈A di
+

P
i∈A,j∈B E(i,j)P

j∈B dj
. Partition the graph into the (A,B) with

minimum NCut. If stability(A,B)≤ c, recursively reparti-
tion A and B.3
As we will show in section 4, the spectral clustering ap-

proach appears to work well in practice. However, refine-
ments that iterate the clustering and EM steps, or incorpo-
rate soft clusterings, may improve results even further.

2.2. Inference
LGM models can be used to improve inference on in-

sample and out-of-sample classification tasks. In-sample
classification refers to tasks where the test set links back
into the groups identified in the training set. In this case
there may be enough information about the class distribu-
tion associated with the groups in the training set for group
membership (i.e., G) to improve inference without infer-
ring group type. Out-of-sample classification refers to tasks
where the test set, or identified groups, are nearly disjoint
from the training set groups. In this case, it is necessary to
generalize about group properties to improve performance.
When applying an LGM model for classification, class

labels C, group membership G, and group type T are all
unobserved and must be inferred. Our inference algorithm
is similar to the sequential learning procedure. We begin by
clustering the objects into groups using the observed links.
This simplifies inference by partitioning the objects into dis-
joint sets and fixing their group membership. Then infer-
ence can be decomposed into disjoint subtasks, one for each
group. Within each group, the class labels are conditionally
independent given the group type so we use standard belief
propagation to jointly infer group types and class labels.

3. Related Work
3.1. Modeling Coordinating Objects
Slattery and Mitchell [21] use an approach based on the

HITS algorithm [9] to identify coordinating objects in the
data. This approach exploits autocorrelation dependencies
by propagating information through these objects, but it
does not generalize about group properties.
The social networks community provides latent vari-

able models that cluster objects based on their link struc-
ture [18, 5, 25, 8]. These approaches use patterns of rela-
tions to identify which roles the objects play in the data.
Although these models often incorporate richer representa-
tions for the relational link structure (e.g., [25]), they do not
incorporate attributes into the model. The models are also
primarily used for clustering rather than for classification.
PRMs have been used to cluster the objects in relational

datasets [24], using latent variables on a subset of object
3We use the termination criterion proposed in [20]. Stabil-

ity(A, B) is defined as the ratio of the minimum and maximum
bin counts, after the values of x1 are binned by value intom bins.
Unless otherwise noted, we usem = #log2(N)+1$ and c = 0.06.



types. This approach does not posit group structures, but
it is useful in situations where the coordinating objects are
fixed and known. For example in the cinematic domain,
an PRM with a latent variable on studios could be used to
represent the autocorrelation among movie returns.

3.2. Modeling Communities
Popescul and Ungar [19] cluster relational database ta-

bles using standard k-means clustering algorithms and then
use the cluster IDs as features in conditional models that
reason about each instance independently. This approach
has been shown to improve classification performance, but
it can only be employed in situations where the test set in-
stances link into the clusters used during training because
the features use the identity of the clusters rather than gen-
eralizing over the properties of the groups.
Kubica et al. [10] use a latent variable model to cluster

objects into groups based on their attribute values and link
structure. Their approach is geared toward clustering data
with multiple transactional links (e.g., phone calls, email)
where the links patterns are homogeneous with respect to
the groups. In other words, it is assumed that all groups
have the same distribution of intra- and inter-group link-
age. Situations where the patterns of linkage differ among
groups are, however, easy to imagine. For example, con-
sider machine learning papers: Reinforcement learning pa-
pers tend to cite papers in optimization, operations research,
and theory, but genetic algorithm papers cite primarily other
genetic algorithm papers. Allowing the link probabilities to
vary among groups will be important for modeling group
structures in large heterogeneous domains.

3.3. Collective Inference
Many collective models learn a joint distribution of the

attributes of set of instances. Relational Markov networks
(RMNs) [23] and relational dependency networks (RDNs)
[15] model autocorrelation explicitly in the joint distribu-
tion. RMNs use clique templates to model the pairwise cor-
relations among class labels of related instances; RDNs use
aggregated features. These techniques model the autocor-
relation dependencies at a global level—the autocorrelation
dependencies are assumed to be uniform across each link in
the data and parameters of features are tied across the entire
dataset. As such, these models will not be able to distin-
guish among regions with varying levels of autocorrelation.

4. Experimental Results
The experiments in this section demonstrate the utility

of latent group models in relational domains. Using three
classification tasks, we evaluate whether LGMs can lever-
age autocorrelation to improve model accuracy and illus-
trate the conditions under which LGMs will perform well.

We present results for two LGM variations. The first
variation, LGM-k, sets the number of group types to the
number of class label values, k = |C| (e.g., for binary tasks,
k = 2); the second variation, LGM-2k, sets k = 2|C|. We
compare LGM to four alternative models. The first two are
conditional models that reason about each instance indepen-
dently and do not use the class labels of related instances:
The relational probability tree (RPT) model [16] is a deci-
sion tree model and the relational Bayesian classifier (RBC)
model [17] is a naive Bayes model. The third model is a re-
lational dependency network (RDN) [15] that reasons about
networks of instances collectively. The fourth model (RDN-
ceil) is a probabilistic ceiling for the RDN model, where we
allow the true labels of related instances to be used during
inference. This model shows the level of performance pos-
sible if the RDN model could infer the true labels of related
instances with perfect accuracy.
To limit the confounding effects of feature construction

and model selection, we first consider the restricted task of
predicting class labels using only the class labels of related
instances and/or the group membership. For the RPT and
RBCmodels, we clustered the training and test sets together
and used cluster ID as the sole attribute in the model. The
performance of these baseline models illustrates the base-
line utility of clustering without generalization about group
type and serves as a comparison to previous work that clus-
ters the data to generate additional features for classifica-
tion [19]. For LGM, RDN and RDN-ceil, we used the class
label of related instances as the sole attribute available for
modeling. We used exact inference for all models except
the RDN, which requires an approximate inference. In the
RDN experiments, we used Gibbs sampling with chains of
length 500 and burn-in of 100. (At this length, area under
the ROC curve (AUC) had converged.) During inference we
varied the number of known class labels available to seed
the inference process. We expect this will be illustrative of
performance when other information serves to seed the in-
ference process—either when some labels can be inferred
from intrinsic attributes, or when weak predictions about
many related instances serve to constrain the system.
A second set of experiments, designed to explore the im-

pact of intrinsic attribute information on performance, in-
cludes object attributes in each of the models.

4.1. Data and Tasks
The first data set was collected by the WebKB

Project [3]. The data consist of a set of 3,877 web pages
from four computer science departments, manually labeled
with the categories: course, faculty, staff, student, research
project, or other. We considered the unipartite co-citation
web graph. The classification task was to predict page cat-
egory. As in previous work on this dataset, we do not try
to predict the category “other”; we remove these instances
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Figure 3. Model performance as the proportion of labeled instances during inference is varied.

from the data after creating the co-citation graph.
The second data set is from the IMDb (www.imdb.com).

We used a sample of 1,382 movies released in the U.S. be-
tween 1996 and 2001. The binary classification task was
to predict movie returns >$2mil. Based on past work that
showed movie receipts to be autocorrelated through stu-
dios [6], we considered a unipartite graph of movies, where
links indicate movies that are made by a common studio.
The third data set is drawn from Cora, a database of com-

puter science research papers extracted automatically from
the Web using machine learning techniques [13]. We con-
sidered the unipartite co-citation graph of 4,330 machine-
learning papers. The classification task was to predict one
of seven paper topics (e.g., Neural Networks).

4.2. Results

Figure 3 shows area under the ROC curve (AUC) results
for each of the three classification tasks when the models
do not use attributes. The graph shows AUC for the most
prevalent class, averaged over all samples. For WebKB, we
used cross-validation by department, learning on three de-
partments and testing on the fourth. For IMDb, we used
snowball sampling to bipartition the data into five train-
ing/test samples. For Cora, we used five temporal samples
where we learned the model on one year and applied the
model to the subsequent year. For each training/test split
we ran 10 trials at each level of labeling (on the RDNs we
only ran 5 trials due to relative inefficiency of inference).
The error bars indicate the standard error of the AUC esti-
mates for a single test set, averaged across the training/test
splits. This illustrates the variability of performance within
a particular sample, given the random initial labeling.
On WebKb and IMDB, LGM performance quickly

reaches performance levels comparable to RDN-ceil,
asymptoting at less than 40% known labels. (Note that
RDNs and LGMs cannot be expected to do better than ran-
dom at 0% labeled.) This indicates that the model is able to
exploit group structure when there is enough information to

accurately infer the group type. RDN performance doesn’t
converge as quickly to the ceiling. There are two explana-
tions for this effect. First, when there are few constraints on
the labeling space (e.g., fewer known labels), RDN infer-
ence may not be able to fully explore the space of labelings.
Although we saw performance plateau for Gibbs chains of
length 500-2000, it is possible that longer chains, or alterna-
tive inference techniques, could further improve RDN per-
formance [12]. The second explanation is that joint models
are disadvantaged by the data’s sparse linkage. When there
are few labeled instances, influence may not be able to prop-
agate to distant objects over the existing links in the data.
A group model that allow influences to propagate in more
elaborate ways may be able to exploit the seed information
more successfully. Future work will attempt to quantify the
amount of error due to each of these sources.
RPT performance is near random on all three datasets.

This is because the RPT algorithm uses feature selection
and only a few cluster IDs show significant correlation with
the class label. This indicates there is little evidence to sup-
port generalization about cluster identities themselves. The
RBC does not do any feature selection and uses cluster IDs
without regard to their support in the data. On Cora, the
RBC significantly outperforms all other models. However,
Cora is the one dataset where the test set instances link into
the training set. This indicates that the RBC approach may
be superior for in-sample classification tasks.
LGM performance does not reach that of RDN-ceil in

Cora. Although the LGM outperforms the RDN when there
is little know information, eventually the RDN takes over as
it converges to RDN-ceil performance. We conjecture that
this effect is due to the quality of the clusters recovered in
Cora. Alternative clustering techniques (e.g., soft cluster-
ing, bi-clustering) may improve performance in these data.
Figure 4 shows average AUC results for each of the three

classification tasks when we include attributes in the mod-
els. For the WebKB task, we included three page attributes:
school, url-server, url-text; for IMDb, we included eight bi-
nary movie-genre attributes; for Cora, we included three pa-



per attributes: type, year, month. In all three datasets, the
attributes improve LGM performance when there are few
known labels. This is most pronounced in the IMDb, where
LGM achieves ceiling performance with no class label in-
formation and indicates that movie genre is predictive of
group type. In contrast, the RDN models are not able to
exploit the attribute information as fully. In particular, in
the WebKB task, the attributes significantly impair RDN
performance. This is due to poor feature selection, which
selects biased page attributes over the pairwise autocorrela-
tion features. However, even on the other two tasks where
this was not a problem, the RDN did not propagate the at-
tribute information as effectively as the LGM when there
were less than 40% known class labels.

5. Discussion
Consider the case where there are k group types, |C|

class values, and each object has a latent variable. There is a
spectrum of group models ranging from k= |C| to k=NG.
Collective models that model autocorrelation with global
parameters, reason at one end of the spectrum (k = |C|)
by implicitly using |C| groups. Techniques that cluster the
data for features to use in conditional models (e.g., [19]),
reason at the other end of the spectrum (k = NG) by us-
ing the identity of each cluster. The approach of [10] uses
k = 1 in the sense that it ties the parameters of intra- and
inter-group link probabilities across all groups.
When group size is large, there may be enough data to

reason about each group independently (i.e., use k = NG).
For example, once a studio has made a sufficient number of
movies, we can accurately reason about the likely returns of
its next movie independently. However, when group size is
small, modeling all groups with the same distribution (i.e.,
use k = |C|) will offset the limited data available for each
group. A model that can vary k may be thought of as a
backoff model, with the ability to smooth to the background
signal when there is not enough data to accurately estimate
a group’s type in isolation. LGMs offer a principled frame-
work within which to explore this spectrum.
One of the primary advantages of LGMs is that influence

can propagate between pairs of objects that are not directly
linked but are close in graph space (e.g., in the same group).
In RMNs and RDNs, the features of an object specify its
Markov blanket. This limits influence propagation because
features are generally constructed over the attributes of ob-
jects one or at most two links away in the data. Influence
can only propagate farther by influencing the probability es-
timates of attribute values on each object in a path sequen-
tially. An obvious way to address this issue is to model the
O(N2

O) dependencies among all pairs of objects in the data,
but dataset size and sparse link information makes this ap-
proach infeasible for most datasets. PRMs with existence
uncertainty [11] are the only current models that consider

the full range of dependencies and their influence on ob-
served attributes. Because LGMs can aggregate influence
over an extended local neighborhood, they are a natural way
to expand current representations while limiting the number
of dependencies to model.

6. Conclusions
This paper presents a latent group model that reasons

jointly about attribute information and link structure to im-
prove reasoning in relational domains. To date, work on
statistical relational models has focused on models of at-
tributes conditioned on the link structure (e.g., [23]), or
on models of link structure conditioned on the attributes
(e.g., [11]). Our initial investigation has shown that mod-
eling the interaction among links and attributes will likely
improve model generalization and interpretability.
Latent group models are a natural means to model the

attribute and link structure simultaneously. The groups de-
couple the link and attribute structure, thereby offering a
way to learn joint models tractably. Our analysis has shown
that group models outperform collective models when there
is little information to seed inference. This is likely be-
cause a smaller amount of information is needed to infer
group type than is needed to propagate information through-
out sparse relational graphs. This suggests active infer-
ence as an interesting new research direction—where tech-
niques choose which instances to label based on estimated
improvement to the collective predictions.
Latent group models extend the manner in which col-

lective models exploit autocorrelation to improve model
performance. One of the reasons collective inference ap-
proaches work is that the class labels are at the “right” level
of abstraction—they summarize the attribute information
that is relevant to related objects [7]. Group models also
summarize the information but at higher level of abstraction
(i.e., group membership and type). Positing the existence
of groups decouples the search space into a set of biased
abstractions and could be considered a form of predicate
invention [22]. This allows the model to consider a wider
range of dependencies to reduce bias while limiting poten-
tial increases in variance and promises to unleash the full
power of statistical relational models. Indeed, the results
we report for LGMs using only the class labels and the link
information achieve nearly the same level of performance
reported by relational models in the recent literature.
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