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ABSTRACT
Classification trees are widely used in the machine learning
and data mining communities for modeling propositional
data. Recent work has extended this basic paradigm to prob-
ability estimation trees. Traditional tree learning algorithms
assume that instances in the training data are homogenous and
independently distributed. Relational probability trees (RPTs)
extend standard probability estimation trees to a relational
setting in which data instances are heterogeneous and interde-
pendent. Our algorithm for learning the structure and parame-
ters of an RPT searches over a space of relational features that
use aggregation functions (e.g. AVERAGE, MODE, COUNT) to dy-
namically propositionalize relational data and create binary
splits within the RPT. Previous work has identified a number
of statistical biases due to characteristics of relational data
such as autocorrelation and degree disparity. The RPT algo-
rithm uses a novel form of randomization test to adjust for
these biases. On a variety of relational learning tasks, RPTs
built using randomization tests are significantly smaller than
other models and achieve equivalent, or better, performance.  

1. INTRODUCTION
Classification trees are used widely in the machine learning
and data mining community for propositional data. Due to
their selectivity and intuitive representation of knowledge,
tree models are often easily interpretable. This makes classifi-
cation trees an attractive modeling approach for the knowledge
discovery community. Conventional tree learning algorithms
were designed for data sets where the instances are homogene-
ous and statistically independent. In this paper we present an
algorithm for learning classification trees over relational data
that are heterogeneous and interdependent.

Classification tree popularity has resulted in a large body of
research detailing the results of various algorithm design
choices. For example, it has been shown that cross-validation
can be used to avoid attribute selection biases [6] and that
split criteria are generally insensitive to misclassification
costs [14]. Recent work has extended the basic classification
tree paradigm to probability estimation trees and has focused
on improving probability estimates in leaves [14]. We can

leverage this body of research to construct a new algorithm for
relational data where many sources of potential variance have
been addressed, allowing us to focus on effects due to the
characteristics of relational data.

Our recent work has concentrated on the challenges of learning
probabilistic models in relational data, where the traditional
assumption of instance independence is violated [7, 8]. We
have identified three characteristics of relational
data—concentrated linkage, degree disparity, and relational
autocorrelation—and have shown how they can complicate
efforts to construct good statistical models. They can lead to
feature selection bias and discovery of spurious correlations,
resulting in overly complex models with excess structure.

Excess structure in models is harmful for several reasons. First,
such models are factually incorrect, indicating that some vari-
ables are related when they are not. Second, such models re-
quire more space and computational resources than models
that do not contain unnecessary components. Third, using a
model with excess structure can require the collection of un-
necessary features for each instance, increasing the cost and
complexity of making predictions. Fourth, large models are
more difficult to understand. The unnecessary components
complicate attempts to integrate models with knowledge de-
rived from other sources.

Many techniques common to machine learning, data mining,
and statistical modeling rely on the underlying assumption
that data instances are independent. Techniques for learning
statistical models of relational data need to address the prob-
lems associated with violating these assumptions. We have
developed a promising class of techniques, based on randomi-
zation tests and resampling methods, to adjust for the charac-
teristics of a given relational data set and make accurate pa-
rameter estimates and hypothesis tests. We have incorporated
these approaches into our algorithm for constructing rela-
tional probability trees (RPTs). To our knowledge, RPTs are
the only statistical models for relational data that adjust for
potential biases due to the characteristics of relational data.

We describe an example analysis task and present an abbrevi-
ated version of an RPT model learned for this task. We outline
the details of the RPT algorithm and finish with an experimen-
tal section that evaluates RPTs against C4.5 [15] and relational
Bayes classifiers [13].

2. EXAMPLE TASK
Recent research has examined methods for constructing statis-
tical models of complex relational data [4]. Examples of such
data include social networks, genomic data, and data on inter-
related people, places, things, and events extracted from text
documents. The data set collected by the WebKB Project [2]
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consists of a set of web pages from four computer science de-
partments. The web pages have been manually classified into
categories: course, faculty, staff, student, research project, or
other. The category "other" denotes a page that is not a home
page (e.g. a curriculum vitae linked from a faculty page). The
collection contains approximately 4,000 web pages and 8,000
hyperlinks among those pages. The database contains attrib-
utes associated with each page and hyperlink, including the
path and domain of urls, and the directionality (e.g. lateral, up,
down) of the link in the department hierarchy.

Figure 1: Example probability estimation tree.

Figure 1 shows an RPT constructed by our learning algorithm
for the task of predicting whether a web page is a student home
page (P(+)=0.51). The tree represents a series of questions to
ask about a web page and the pages in its relational neighbor-
hood. The leaf nodes contain probability distributions over
the values of the isStudent target label. They show the number
of training set pages that reached the leaf (partitioned by class)
and the resulting class probabilities. In this tree, the root node
asks whether the page is linked to from a page with more than
111 out-links (e.g. a directory page). If so, the page travels
down the left-hand branch and returns a 99% probability of
being a student page. If not, the page travels down the right-
hand branch. The next node asks whether the page is linked to
from a page without a path appended to the url (e.g. a depart-
ment home page). If so, it is unlikely to belong to a student. If
not, the next node asks whether the page has links from pages
with high out degree on average (e.g. directory pages, research
group pages). If so, the page is likely to be a student page.

This tree is a condensed version of an RPT learned on data
from three departments. The full tree had seven nodes but we
aggregated the lower levels for readability and space consid-
erations. When tested on the fourth held-out department, the
full tree had perfect area under the ROC curve. The tree con-
struction algorithm is described in the next section, and the
details of this experiment are reported in section 4.

3. RELATIONAL PROBABILITY TREES
RPT models estimate probability distributions over possible
attribute values. The task of estimating probability distribu-
tions over the values of a given attribute would appear to dif-
fer little from traditional propositional learning. However,
algorithms for relational learning typically look beyond the
item for which the attribute is defined to consider the effect of
related objects. For example, in order to predict the box-office
success of a movie, a relational model might consider not only
the attributes of the movie, but also attributes of the actors in

the movie and the director, producer, and studio that made the
movie (figure 2a). A model might go even further and consider
attributes of more "distant" objects (in the sense of graph
neighborhood), such as other movies made by the director.

Relational data violate two assumptions of conventional clas-
sification techniques. First, algorithms designed for proposi-
tional data assume the data are independent and identically
distributed (i.i.d.). Relational data, on the other hand, have
dependencies both as a result of direct relations (e.g. hyper-
linked pages) and through chaining multiple relations to-
gether (e.g. pages linked to by the same directory page). Sec-
ond, algorithms for propositional data assume that the data
instances are recorded in homogeneous structures (a fixed set
of fields for each object), but relational data “instances” are
usually more varied and complex. For example, some movies
may have 10 actors and others may have 1000. A relational
classification technique needs to contend with dependent,
heterogeneous data instances for both learning and inference.

Aggregation is widely used as a means to “propositionalize”
relational data for modeling, applied either as a pre-processing
step (e.g. [11]) or dynamically during the learning process (e.g.
[5]). Heterogeneous data instances are transformed into ho-
mogenous records by aggregating multiple values into a sin-
gle value (e.g. average actor age). Conventional machine learn-
ing techniques are then easily applied to the transformed data.
Figure 2b contains a portion of an aggregated relational data
set where multiple values have been averaged (mode is used
for discrete attributes).

Figure 2: (a) example relational instance, (b) portion of a pro-
positionalized relational data set.

Classification tree algorithms are easily modified for rela-
tional data—the examples simply consist of subgraphs in-
stead of independent objects. Feature specifications need to be
enhanced to consider (object, attribute) pairs and aggregation
functions, but the basic algorithm structure remains relatively
unchanged. Several other decision tree algorithms for rela-
tional data have already been developed including TILDE [1],
Multi Relational Decision Trees [9] and Structural Regression
Trees (SRTs) [10]. These systems focus on extending decision
tree algorithms to work in the first-order logic framework used
by inductive logic programming systems (ILP). Although
these systems can be used to build classification trees with



relational data, the space of feature classes they consider i s
restricted to a subset of first-order logic. We chose to imple-
ment a classification tree algorithm with the capacity to ex-
plore a wider range of feature families. In return for this flexi-
bility we gave up some of the expressiveness of the ILP sys-
tems mentioned above. RPTs are not able to refer to a particular
object throughout a series of conjunctions.

3.1 Algorithm Overview
The RPT algorithm takes a collection of subgraphs as input.
Each subgraph contains a single target object to be classified;
the other objects and links in the subgraph form its relational
neighborhood (figure 2a). For reasons of efficiency, in these
experiments we use subgraphs consisting of the target object
and everything one link away, but the RPT algorithm can rea-
son with subgraphs of arbitrary complexity. The RPT algo-
rithm constructs a probability estimation tree to predict the
target class label given (1) the attributes of the target objects,
(2) the attributes of other objects and links in the relational
neighborhood, and (3) degree attributes counting objects and
links in the relational neighborhood.

The algorithm searches over a space of binary relational fea-
tures to split the data. For example, MODE(actor.gender)=female
tests whether a movie’s actors are predominantly female or not.
The algorithm constructs features from the attributes of differ-
ent object/link types in the subgraphs and multiple methods
of aggregating the values of those attributes. Feature scores are
calculated from the class counts after splitting the data, using
chi-square to measure correlation. To choose a feature the algo-
rithm looks at each possible feature, calculating its score and
the p-value associated with the score. If the p-value is not sig-
nificant the feature is dropped from consideration. Among the
features that are significantly correlated with the class, the
feature with max score is selected for inclusion in the tree.

The algorithm recursively partitions the subgraphs by choos-
ing features and binary splits greedily until further partitions
no longer change the class distributions significantly. The
current implementation does not use post-pruning, but rather
pre-pruning in the form of a p-value cutoff. If the p-value asso-
ciated with the maximum chi-square score exceeds the cutoff,
the method returns without splitting the node and growing
stops. Because the features considered are not necessarily in-
dependent we use a Bonferroni adjustment on the p-value cut-
off to account for any dependence. All experiments reported in
this paper used an adjusted alpha of 0.05/|attributes|. This
threshold may be too conservative. Future work will explore
using cross-validation to determine the correct p-value
threshold. Once the tree-growing phase is halted the algorithm
calculates the class distribution of the examples at each leaf
and stores it in the leaf node.  Laplace correction is applied to
the distribution to improve the probability estimates [14].

Given an RPT model learned from a set of training examples,
the model can be applied to unseen subgraphs for prediction.
The chosen feature tests are applied to each subgraph and the
example travels down the tree to a leaf node. The model then
uses the probability distribution estimated for that leaf node
to make a prediction about the class label of the example.

3.2 Relational Features
Features in propositional data typically combine an attribute,
an operator, and a value. For example, a feature for a movie
might be genre=comedy. Relational features are similar in that
they identify both an attribute and a way of testing the values

of the attribute. However, relational features may also identify
a particular relation (e.g. ActedIn(x,y)) that links a single ob-
ject x (e.g. movie) to a set of other objects Y (e.g. actors). If this
is the case, the attribute referenced by the feature may belong
to the related objects Y (e.g. actor age), and the test is con-
ducted on the set of attribute values of the objects in Y.  For
example, the relational feature:

65))((:)},(|{),( >= YAgeMaxyxActedInyYxMovie

determines whether the oldest actor in movie x is over 65.

When the relation is non-deterministic, relational features
must consider sets of attribute values on the objects Y. In this
situation, standard database aggregation functions can be used
to map sets of values into single values. The RPT algorithm
considers  the fol lowing aggregation functions:
MODE/AVERAGE, COUNT, PROPORTION, DEGREE. MODE is used for
discrete attributes, AV E R A G E  for continuous. MINIMUM,
MAXIMUM, and EXISTS are special cases of these aggregation
functions. COUNT, PROPORTION and DEGREE features consider a
number of different thresholds (e.g. PROPORTION>10%). Fea-
tures of continuous attributes search for the best binary discre-
tization of the attribute (e.g. COUNT(actor.age>15)).

The graph structure of relational data may also be used in fea-
tures. For example, a feature could count the number of actors
associated with a movie, instead of counting a particular at-
tribute value on actors. We will refer to such features as DEGREE

features throughout the rest of this paper. DEGREE features can
count the degree of links (e.g. number of phone calls between
two people), the degree of objects (e.g. number of children for a
given parent), or even the degree of attribute values (e.g. num-
ber of aliases for a given person). In certain restricted types of
relational data, such as spatial or temporal data, it is not as
important to be able to represent degree because all instances
have similar structure. However, we have analyzed a number of
relational data sets that have degree disparity, where degree
features are highly correlated with the class label [8].

3.3 Feature Selection Biases
Accurate feature selection is a crucial component of tree learn-
ing algorithms. We have shown that feature selection will be
biased when relational learning algorithms ignore common
characteristics of relational data. Concentrated linkage and
relational autocorrelation can cause learning algorithms to be
strongly biased toward certain features, irrespective of their
predictive power [7], and degree disparity can lead relational
learning algorithms to discover misleading correlations [8].

Concentrated linkage occurs when many objects are linked to a
common neighbor, and relational autocorrelation occurs when
values of a given attribute are highly uniform among objects
that share a common neighbor. Linkage and autocorrelation
bias feature selection in a two-step chain of causality. First,
linkage and autocorrelation combine to reduce the effective
sample size of a data set, thus increasing the variance of scores
estimated using that set. Just as small data samples can lead to
inaccurate estimates of the scores used to select features, con-
centrated linkage and autocorrelation can cause the scores of
some features to have high variance. Second, increased vari-
ance of score distributions increases the probability that fea-
tures formed from objects with high linkage and autocorrela-
tion will be selected as the best feature, even when these fea-
tures are random.

Degree disparity, another common characteristic of relational
data, occurs when the frequency (non-determinism) of a rela-



tion is correlated with the values of the target variable. When
aggregation is used on data with degree disparity it can lead
data mining algorithms to include spurious elements in their
models and to miss useful elements. These errors arise because
many aggregation functions (e.g. MAX) will produce apparent
correlation between the aggregated values (e.g. maximum
movie receipts) and a class label (e.g. studio location) when-
ever degree disparity occurs, regardless of whether the attrib-
ute values have any correlation with class label.

3.4 Hypothesis Tests
Statistical hypothesis tests can be used to adjust for feature
selection biases. Hypothesis tests compare the value of a sta-
tistic (e.g. the correlation of a given feature with the class la-
bel) to a sampling distribution. A sampling distribution rep-
resents the values of the statistic that would be expected under
a given null hypothesis. A typical null hypothesis is that a
feature and a class label are statistically independent, though
other null hypotheses are also common. If the value of the
statistic exceeds a large percentage of the values in the sam-
pling distribution, the null hypothesis is rejected, and some
alternative hypothesis (e.g. that the given feature is correlated
with the class label) is accepted.

Widely known and computationally simple procedures exist
for hypothesis tests in propositional data. One classical hy-
pothesis test scores the bivariate association between an at-
tribute and the class label using a chi-square statistic. Exact
calculations and approximations of the sampling distribution
for chi-square are known (parameterized by the number of val-
ues in each variable). If the observed chi-square value exceeds
the vast majority of the values in the sampling distribution, a
learning algorithm may reject the null hypothesis with high
confidence and include the variable in an induced model.
However, conventional sampling distributions are derived
from i.i.d. data. If the instances are drawn from a relational
data set, the data instances may not be independent so the
known sampling distributions may not be appropriate.

3.5 Randomization Tests
Randomization tests provide a method for accurate hypothesis
testing in relational data. Randomization tests have been
widely applied to propositional data over the past two dec-
ades. We have modified these techniques for relational data.
The RPT algorithm use randomization tests to account for bias
and variance in feature scores due to linkage, autocorrelation
and degree disparity.

A randomization test is a type of computationally intensive
statistical test [3], which involves generating many replicates
of an actual data set—typically called pseudosamples—and to
estimate a sampling distribution. Pseudosamples are generated
by randomly reordering (permuting) the values of one or more
variables in an actual data set. Each unique permutation of the
values corresponds to a unique pseudosample. A score is cal-
culated for each pseudosample and the randomized scores are
used to estimate a sampling distribution. This sampling dis-
tribution is used to calculate an empirical p-value for the score
calculated from the actual data.

To construct pseudosamples in relational data, we randomize
the attribute values prior to aggregation. We retain the rela-
tional structure of the data and randomize attribute vectors
associated with each object type. For example, in the case of
movies, actors, and studios, this approach randomizes the at-
tribute vectors of movies (e.g. genre and length), actors (e.g.

age and gender), and of studios (e.g. location)—preserving
each intrinsic attribute vector but moving it to a new object.

With this approach, pseudosamples retain the linkage present
in the original sample and the autocorrelation among the class
labels. In addition, any degree disparity present in the data i s
preserved. Randomizing attribute vectors destroys the correla-
tion between the attributes and the class label in pseudosam-
ples, thus making them appropriately conform to the null hy-
pothesis—that there is no correlation between the attribute
values and the class label. In addition to adjusting for the ef-
fects of autocorrelation and degree disparity, randomization
tests adjust for the effects of attribute selection errors due to
multiple comparisons [6].

Randomization tests provide one method of hypothesis test-
ing to adjust for the effects of degree disparity, linkage and
autocorrelation on parameter estimates. An alternative is to
estimate the parameters (feature scores) more accurately. We
have explored adjustments to chi-square calculations that
"factor out" the bias introduced by degree disparity [8]. How-
ever, adjustments are hard to calculate for some combinations
of aggregation function and attribute distributions. Also, we
do not yet know how to adjust for the high variance associated
with objects having high linkage and autocorrelation. For
now, we use randomization tests to make accurate assessments
of significance when choosing among features with differing
levels of bias and variance. This approach facilitates unbiased
feature selection and prevents excessive tree structure.

4. EVALUATION
The first data set is drawn from the Internet Movie Database
(IMDb) (www.imdb.com). We gathered a sample of all movies
released in the United States from 1996 to 2001, with opening
weekend receipt information. Our randomization procedure i s
limited to data sets with non-zero degree so we selected the set
of 1364 movies that had at least one actor, director, studio and
producer. In addition to these movies, the collection contains
all associated actors, directors, producers, and studios. We
discretized movie receipts so that a positive class label indi-
cates a movie earned more than $2 million in its opening-
weekend (P(+)=0.45).

Our first task used a modified version of the IMDb data set
where the only features correlated with the class label are
D EGREE features. Movies with a positive class label have
higher degree with respect to actors and producers, though no
significant difference in director degree or studio degree. On
each actor, director, producer, and studio object we added 6
random attributes (3 discrete and 3 continuous). Discrete at-
tributes were drawn from a uniform distribution of ten values;
continuous attribute values were drawn from a uniform distri-
bution in the range [0,10]. The model could consider four de-
gree features, one for each type of object linked to the movie.

The second task also used the IMDb dataset, but used both the
structure and the attributes in the original data. The models
had eight attributes available for classification, such as the
genre of the movie and the year of a producer's first film.

The third task used a data set drawn from Cora, a database of
computer science research papers extracted automatically from
the web using machine learning techniques [12]. We selected
the set of 1,511 machine-learning papers that had at least one
author, reference and journal. In addition to these papers, the
collection contains all associated authors, references, and
journals. The class label indicates whether a particular paper



Figure 3: Accuracy, AUC for the four models across the various classification tasks.

was assigned the topic of "neural networks" (P(+)=0.32). The
models had 15 attributes available for classification, includ-
ing a reference’s high-level topic (e.g. artificial intelligence)
and an author's number of publications.

The fourth task used a relational data set containing informa-
tion about the yeast genome at the gene and the protein level
(www.cs.wisc.edu/~dpage/kddcup2001/). The data set contains
information about 1,243 genes and 1,734 interactions among
their associated proteins. The class label indicates whether or
not a gene is located in the nucleus (P(+)=0.44). The models
used seven attributes for prediction, including gene pheno-
type, complex, and interaction type.

The fifth classification task used the WebKB data set described
in section 2. We selected the set of 910 course, faculty, project,
staff, and student pages that have at least one in-link and out-
link. The collection also includes all pages that link to/from
these pages, a total of 3,877 web pages. The class label indi-
cated whether a page is a student page (P(+)=0.51). The models
used 10 attributes for prediction, including attributes such as
the URL path and host, and attributes counting the number of
in links and out links (directional degree) of each linked page.

For each of the tasks, we tested four models. The first model i s
an RPT that uses conventional chi-square significance tests
(CTs) to evaluate feature splits. The second model is an RPT
that uses randomization tests (RTs) to measure significance. In
order to separate the effects of the randomization tests from the
rest of the RPT learning algorithm we included a standard tree
learner—we generated propositional data sets containing all
the binary features considered by the RPT and applied the C4.5
algorithm [15]. As a baseline, we also applied a non-selective
relational Bayes classifier (RBC) [13].

To evaluate the models, we measured accuracy and area under
the ROC curve (AUC). Because the C4.5 models return classifi-
cations only (not probability estimates) we could not calculate
AUC for the C4.5 models. The experiments all used ten-fold
cross-validation, except in the case of WebKB, which used
leave-one-department-out cross-validation. Due to the high
degree of studio objects in the IMDb data set, we used strati-
fied sampling by studios to create the test sets. We randomly
sampled studios from three sets (studios with high, medium,
and low degree) and all their associated movies, thus creating
test sets of roughly equal proportion.

To examine the effects of feature selection we recorded the
number of tree nodes that used features based only on rela-
tional structure (DEGREE features) and the overall number of
nodes. We weighted each count based on the proportion of
training instances that traveled through a given node.

Figure 3 shows accuracy and AUC results for each of the four
models on the five classification tasks. We used two-tailed,
paired t-tests to assess the significance of the results obtained
from the cross-validation trials. The null hypothesis is that
there is no difference between two approaches. We compared
RTs to each of the other three approaches (CTs, C4.5, RBCs).
An asterisk above the model indicates a significantly different
performance from the RTs.

Figure 4: Tree size and weighted proportion of degree features.

The results from the IMDb data set with random attributes
(Random in Figure 3 and 4) support three claims.  First, RPTs
using randomization tests (RTs) can adjust for linkage and
autocorrelation and build more accurate models. RTs perform
significantly better than the other three models. These results
indicate the potential for biased models to select attributes
that hinder performance. The lower performance is due to selec-
tion of random attributes on studio objects. Features involv-
ing these attributes have high variance because of the low ef-
fective sample size of studios. If objects with high linkage and
autocorrelation, such as studios, are present in the data, attrib-
utes of those objects will be selected even if they have no cor-
relation with the class. Second, aggregation functions can



cause misleading correlations in the presence of degree dispar-
ity. In the IMDb data set with random attributes, the only pre-
dictive structure is the degree disparity of "actor" and "pro-
ducer" objects. Approximately 4/5 of the features in trees built
with conventional tests (CTs) consisted of features derived
from random attributes that served as surrogates for degree.
Third, the results from the Random data set show that models
that do not adjust for these biases can add unnecessary com-
plexity. Trees built with conventional tests were, on average,
an order of magnitude larger than the size of the trees built
with randomization tests.

The results from experiments on real data show that RTs
achieve comparable performance to CTs and C4.5 models, both
in accuracy and AUC. However, the trees had radically different
structure. Figure 4 summarizes the features used in RPT trees
built with conventional tests and randomization tests, as well
as trees built with C4.5. Note that in data sets where degree
disparity is predictive (IMDb, and Cora), RTs give higher
weight to degree features.

5. CONCLUSIONS
We have shown that it is possible to extend conventional
probability estimation tree algorithms to work with relational
data. The RPT models built using randomization tests per-
forms equivalently to RPT models using conventional hy-
pothesis tests but the trees are significantly smaller. This sup-
ports our claim that common characteristics of relational can
bias feature selection and result in excessively complex mod-
els. Randomization tests adjust for both the increased bias due
to degree disparity and the increased variance due to linkage
and autocorrelation. To our knowledge, no other relational
learning algorithms adjust for these biases.

Models that are not selective (e.g. RBC) do not suffer from
these biases. This can result in significantly better models, but
we then lose the interpretability of the selective models. RBCs
exhibited significantly lower performance on datasets where
degree was the only feature correlated with the class (Random,
WebKB). More work needs to be done to explore the situations
in which RBC performance is distinct from RPT. We may be
able to combine the strengths of RPT feature construction and
selection methods with the low variance parameter estimates of
RBC models.

Future work will investigate further enrichments to the RPT
model and algorithm. Currently, the algorithm ranks by score
to select features for inclusion in the tree but this may not be
the best approach for biased feature scores. We are currently
exploring alternate approaches to ranking and selection that
standardize the observed scores with the sampling distribu-
tions obtained from randomization tests.

Also, extending the algorithm to consider multiway feature
splits and alternative methods of modeling continuous attrib-
utes should improve performance. We will conduct a series of
more focused ablation studies to determine which characteris-
tics of the algorithm are most beneficial and to further under-
stand the complexities of relational data and their effect on
modeling choices.
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