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Abstract

In this paper we present the Relational Bayesian
Classifier (RBC), a modification of the Simple Bayesian
Classifier (SBC) for relational data. There exist several
Bayesian classifiers that learn predictive models of
relational data, but each uses a different estimation
technique for modeling heterogeneous sets of attribute
values. The effects of data characteristics on estimation
have not been explored. We consider four simple
estimation techniques and evaluate them on three real-
world data sets. The estimator that assumes each multiset
value is independently drawn from the same distribution
(INDEPVAL) achieves the best empirical results. We
examine bias and variance tradeoffs over a range of data
sets and show that INDEPVAL’s ability to model more
multiset information results in lower bias estimates and
contributes to its superior performance.

1. Introduction

This paper presents a modification of the Simple
Bayesian Classifier (SBC) for relational data. The power
of relational data lies in combining intrinsic information
about objects in isolation with information about related
objects and the connections between those objects.
However, the data often have irregular structures and
complex dependencies, which contradict the assumptions
of conventional modeling techniques. In particular, the
heterogeneous structure of relational data precludes direct
application of a SBC model, which operates on attribute-
value data. We consider several approaches to modeling
data with a relational Bayesian classifier (RBC) and
evaluate performance on three data sets. The approach
that follows the spirit of SBC and assumes conditional
attribute value independence appears to work best. (See
[9] for an expanded version of this paper.)

The simplicity of the SBC stems from its assumption
that attributes are independent given the class—an
assumption rarely met in practice. Research investigating
the effects of this assumption on performance has helped
to better understand the range of applicability of the SBC.
For example, Domingos and Pazzani [2] showed that the
SBC performs well under zero-one loss even when the

independence assumption is violated by a wide margin.
This paper studies similar questions for relational data.
We empirically evaluate four different techniques on
several real-world data sets.  We explore the techniques
on simulated data sets, decomposing loss into bias and
variance estimates [1].  Our experiments show that
characteristics of relational data can bias certain
estimators and that using estimators with decreased bias
improves model performance.

2. Modeling Relational Data

Relational data violate two assumptions of
conventional classification techniques. First, algorithms
for propositional data assume that the data instances are
recorded in homogeneous structures (e.g. a fixed set of
fields for each object), but relational data “instances” are
consist of sets of heterogeneous records. Second,
algorithms for propositional data assume that the data
instances are independent and identically distributed
(i.i.d.), but relational data have dependencies both through
direct relations and through chaining multiple relations
together. In this paper, we evaluate simple algorithms for
learning models of data sets with heterogeneous instances.
We do not attempt to exploit dependencies among related
instances.

Relational data often have complex structures that are
more difficult to model than homogeneous instances. For
example, in order to predict the box-office success of a
movie, a relational model might consider not only the
attributes of the movie, but also attributes of the movie’s
actors, director, producers, and the studio that made the
movie. A model might even consider attributes of
indirectly related objects such as other movies made by
the director. Each movie may have a different number of
related objects, resulting in diverse structures. For
example, some movies may have 10 actors and others
may have 1000. When trying to predict the value of an
attribute based on the attributes of related objects, a
relational classification technique must consider multisets
of attribute values. For example, we might model the
likelihood of movie success given the multiset of gender
values from the movie’s actors.

There are a number of approaches to modeling sets of
attribute values. Propositionalization is a common



technique to transform heterogeneous data instances into
homogenous records, mapping sets of values into single
values with aggregation functions. A second approach is
to treat the set of values independently and aggregate the
resulting probability distributions using combining rules
such as noisy-or or average [4]. A third approach is to
model the sets directly with multinomials [7] or complex
set-valued estimators [6].

This paper considers four estimation techniques from
the range of approaches outlined above. Recent work has
demonstrated the feasibility of these approaches for
statistical models of relational data, but the choice of
technique for any one model has been approached in a
relatively ad-hoc manner. A thorough understanding of
the effects of relational data characteristics on estimator
performance will improve parameter estimation for
relational data and should inform the development of
more complex statistical models.

Figure 1. Relational data represented as (a) a subgraph, and
(b) decomposed by attribute.

3. Relational Bayesian Classifiers

The RBC represents heterogeneous examples as
homogenous sets of attribute multisets. For example, a
movie subgraph contains information about a number of
related objects, such as actors and studios (e.g. Figure 1a).
Transformed examples contain a multiset of values for
each attribute, such as actor-age and studio-location (e.g.
Figure 1b). This enables a SBC approach, where learning
a model consists of estimating conditional probabilities
for each attribute. However, estimation techniques for
these data will need to model multisets of varying
cardinality and high dimensionality. We refer to
techniques used to estimate these probabilities as
estimators . We will evaluate three approaches to
estimation and four approaches to inference.

Average Value—The average value estimator
(AVGVAL) corresponds to propositionalizing the data by
averaging. During estimation, each multiset is replaced
with its average value (for continuous attributes) or modal
value (for discrete attributes). The average values are used
in a standard maximum-likelihood estimator and
probabilities are inferred from average/modal values as
well. AV G V A L  estimators are commonly used in
probabilistic relational models (PRMs) to model
dependencies where the “parent” consists of a set of
attribute values [3].  We hypothesize that AVGVAL should
perform well if the multiset values are highly correlated,
so the multiset is no more informative than the average.

Random Value—The random value estimator
(RANDVAL) is similar to AVGVAL. However, instead of
deterministically choosing the most prevalent value from
the set, RANDVAL chooses a representative value
stochastically. This allows the estimation to differentiate
between relatively uniform sets of values and highly
skewed sets. This approach is equivalent to the stochastic-
mode aggregation used in PRMs for classification [10].
Although RANDVA L  may be more sensitive to the
distribution of values in the sets, it may also experience
greater variance if multiset values are distributed
uniformly over a large range.

Independent Value—The independent value estimator
(INDEPVAL) assumes each multiset value is independently
drawn from the same distribution. This estimator is
designed to mirror the independence assumption of
SBC—now in addition to attribute independence, there is
also an assumption of attribute value independence given
the class. INDEPVA L  models the multiset with a
multinomial distribution where the size of the set is
independent of the class. INDEPVAL should perform well
if the multiset can be used to reduce variance, when there
is little correlation among attribute values.

Average Probability—The fourth estimator
(AVGPROB) aggregates probability distributions. It is an
inference technique only (IN D E P V A L  is used for
estimation). During inference, each multiset value’s
probability is computed independently and then the set of
probabilities is averaged. This approach is one of the
combining rules used in Bayesian logic programs (BLPs)
to integrate probabilities into logic programs [4].
AVGPR O B  computes an arithmetic average of
probabilities. If the set values are dependent, geometric
averaging (used in INDEPVAL) will push the probabilities
to extreme values. However, geometric averaging is more
robust to irrelevant values, which pull arithmetic averages
toward the center and wash out the effects of the useful
values.

4. Empirical Data Experiments

The experiments reported below evaluate the claim
that RBC models using INDEPV AL estimators will
outperform RBC models using AVGVAL, RANDVAL or
AVGPROB estimators. We compare the performance of
each estimator on three real-world classification tasks. To
compare the approaches, we recorded accuracy and area
under the ROC curve using ten-fold cross-validation.

4.1. Classification Tasks

The first data set, drawn from the Internet Movie
Database (IMDb) (www.imdb.com), is a sample of all
movies released in the United States from 1996 to 2001,
with opening weekend box-office receipt data. The
sample contains 1383 movies and related actors, directors,
producers, and studios.  The task was to predict whether a
movie made more than $2mil in opening weekend



receipts (P(+)=0.45). Nine attributes were supplied to the
models, including studio country and actor birth-year.

The second data set, drawn from Cora [8], is a sample
of 4330 machine-learning papers and associated authors,
journals/books, publishers, and cited papers. The task was
to predict whether a paper’s topic is Neural Networks
(P(+)=0.32).  Ten attributes were available to the models,
including journal affiliation and paper venue.

The third data set contains information about 1243
genes in the yeast genome and 1734 interactions among
their associated proteins (www.cs.wisc.edu/~dpage/
kddcup2001/). The task was to predict whether a gene’s
functions include Transcription (P(+)=0.31).  Fourteen
attributes where supplied to the models, including gene
phenotype, motif, and interaction type.

4.2. Results

Figure 2 shows AUC results for each of the models on
the three classification tasks, averaged over the ten folds.
Accuracy results are comparable [9]. We used two-tailed,
paired t-tests to assess the significance of the ten-fold
cross-validation results, comparing INDEPVAL to each of
the other estimators. Asterisks in Figure 2 indicate a
significant difference in performance compared to
INDEPVAL (p-value < 0.001).

On the IMDb and Cora classification tasks,
INDEPVAL’s AUC results are superior to any of the other
approaches. The performance of AVGVAL and RANDVAL
indicates that propositionalizing relational data (even
stochastically) to apply conventional models may not
always be a good approach. On the Gene task, all
approaches perform equivalently.

Figure 2: Results of empirical data experiments for IMDb,
Cora, and Gene databases.

5. Synthetic Data Experiments

We use synthetic data to explore the effects of linkage,
attribute correlation, and multiset distributions on
estimator performance. Relational data sets often exhibit
concentrated linkage, where certain object types have a
large number of relations. For example, papers in Cora
link to a few journals, and movies in the IMDb link to a
small number of studios. Uniformity among attribute
values of objects that share a common neighbor is also
common in relational data. For example, in the gene data,

proteins located in the same place in the cell often have
highly correlated functions.

5.1. Methodology

Our synthetic data sets are comprised of bipartite
graphs, each containing a single core object (e.g. a movie)
linked to zero or more peripheral objects (e.g.
actors). Note that each actor links to exactly one
movie. Each movie has a binary class label, C={+,-}, and
each actor has a binary attribute, A={1,0}. The number of
actors per movie is distributed normally with mean equal
to |actors|/|movies|. The default experimental parameters
were 100 movies, 500 actors, P(C=+)=0.5, and
P(A=1|C=+)=P(A=0|C=-)=0.75. Variations from these
defaults are described for each experiment below.

We measured average zero-one loss and squared-loss
for each RBC estimator across 100 pairs of training/test
sets and decomposed loss into bias and variance [1]. Bias
and variance estimates were calculated for each test
example using 100 different training sets and averaged
over the entire test set. This was repeated for 100 test sets
and averaged. The zero-one loss results are presented in
Figure 3. Squared-loss results are similar [9].

Figure 3: Results of synthetic data experiments.

5.2. Results

The experiment shown in Figure 3a varied the total
number of actors in each data set from 100 to 1000.  In
this experiment A V GV AL and INDEPVAL are nearly
indistinguishable, as are AVGPROB and R ANDVAL. For all
estimators except RANDVAL, increasing degree reduces
variance. This was expected, as the variance of the
random value selection increases with set size.
AVGPROB’s arithmetic averaging cannot exploit the extra
information in larger sets, which results in higher bias.



The experiment in Figure 3b varied the correlation
among linked actor attribute values from [0.05,0.85]. 
Again, AVGVAL and INDEPVAL are indistinguishable. As
attribute correlation increases, the bias of the INDEPVAL
estimator increases, indicating that INDEPVAL’s
probability estimates may be skewed in data with high
attribute correlations.

The experiment in Figure 3c varied P(A=1|C=+) from
[0,1] while holding P(A=1|C=-) constant at 0.  This is the
first experiment to show a difference between AVGVAL
and INDEPVAL, illustrating performance when rare
attribute values determine the class. Since INDEPVA L
shows lower bias than either of the other estimators we
can attribute its higher accuracy to this reduction in bias.

Given these results, the relative strength of INDEPVAL
appears to lie in the estimator’s ability to make use of rare
attribute values, as well as multiple predictive values
within a multiset. To determine if these types of multisets
occur in practice, we examined multisets from the IMDb.
We calculated the correlation of each attribute value with
the class label using chi-square, assessed significance
after adjusting for multiset size [5], and then determined
the number of unique correlated attribute values per
movie. Figure 4 shows the frequency distribution of these
counts across movies for three example attributes. A large
number of movie subgraphs have more than one unique
attribute value correlated with the class. In this situation,
estimators that can capture more multiset information
(e.g. IN D E PV A L) will outperform estimators that
propositionalize to a single value (e.g. AVGVAL).

Figure 4: Count of unique significantly correlated values in
each subgraph, for three attributes in the IMDb.

6. Conclusions

We have identified a simple approach to estimation for
relational data. Adhering to the spirit of SBC simplicity,
the RBC model that assumes conditional independence of
both attributes and multiset attribute values (INDEPVAL) is
successful in a variety of real-world classification tasks.
This model is easy to implement and efficient to use,
making it a good baseline for evaluation of more complex
relational learning techniques.

INDEPVAL estimators have low bias and variance over
a wide range of synthetic data sets. AVGVAL has low
variance over a number of conditions, but it is easy to
identify situations in which A V G V A L  is a biased
estimator. We can infer that INDEPV AL’s superior

performance on the real-world classification tasks is a
result of lower overall bias—due to its ability to exploit
information contained in both rare values and multiple
correlated values within the sets. AVGPROB appears to be
biased over a number of data sets, but it performs quite
well on the IMDb. This reveals that our synthetic data
experiments have not clearly identified the circumstances
in which AVGPROB is a good approach to estimation.

Future work will include further analysis of the effects
of relational data characteristics on complex multiset
estimators [e.g. 6] and development of models that select
attribute estimators based on data characteristics.
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