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ABSTRACT

We analyze publication patterns in theoretical high-energy
physics using a relational learning approach. We focus our
analyses on four related areas: understanding and identify-
ing patterns of citations, examining publication patterns at
the author level, predicting whether a paper will be accepted
by specific journals, and identifying research communities
from the citation patterns and paper text. Each of these
analyses contributes to an overall understanding of theoret-
ical high-energy physics that could not have been achieved
without examining each area in detail.

1. INTRODUCTION

We identify interesting patterns and relationships in the
theoretical high-energy physics publishing community using
a relational learning approach. We focus on several high-
level questions:

e Can we predict why some papers receive more citations
than others? What are the trends in citations and
references?

e What factors contribute to an author’s influence? Can
we identify measures of influence? Can we predict po-
tential award winners?

e What factors contribute to journal publication? Can
we predict whether a paper will appear in a particular
journal?

e Can we identify schools of thought or communities in
theoretical high-energy physics? Who are the most
authoritative authors for each community?

We analyzed these questions using a relational approach.
We constructed the relational schema shown in Figure 1.
This schema provides a rich representation for the hep-th
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Figure 1: Schema extracted from the abstracts and
citation data. Objects are represented by vertices
and relations by edges; numbers in parentheses are
object and relation counts.

data and supports many interesting analysis and prediction
tasks. In the following sections, we discuss our analyses and
present our results, including:

e Approximately 26% of the people in hep-th wrote pa-
pers that received 80% of the citations.

e Edward Witten is the most influential author in theo-
retical high-energy physics.

e Papers with only a single author are less likely to be
published in journals than multi-authored papers.

e Authors tend to prefer particular journals, that is, a
journal’s name is autocorrelated through authors.

e Authors tend to publish within topics (i.e., topics are
also autocorrelated though authors).

These findings and many others are explained in more
detail in sections 3 through 6.

2. DATA REPRESENTATION
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sented as vertices in the graph. Relations between these ob-
jects, such as published-in(paper, journal), are represented
by links between the objects. If there is a relation r (o1, 02),



then 01,00 € V and r € E. Attributes are associated
with objects, such as author.last-name, or edges, such as
authored.rank.

Figure 1 shows the objects and relations we use, along
with their counts in the database. Details on the attributes
and on how we extracted them from the hep-th data are
given in Appendix A. The process of author consolidation,
that is, determining if the John Smith who wrote paper 1
is the same person as the J. Smith who wrote paper 2, was
greatly facilitated by the relational structure [1]. Details of
our consolidation approach are in Appendix B.

3. CITATION ANALYSIS

Our first analysis focuses on the papers and citation re-
lations between them. We start by identifying patterns and
correlations in this data. We use this to analyze why some
papers are more popular than others and we build a rela-
tional model to predict popular papers.

3.1 Citation Graph Analysis

The citations graph is comprised of 1,928 separate con-
nected components. The largest contains 27,400 papers,
while all the others contains 10 or fewer papers. The growth
in popularity of arXiv and hep-th (1397 papers in 1992 to
3312 in 2002) and the limited time frame of the data set
cause edge effects on the early and late years; so we of-
ten concentrate on the more stable middle years. Figure 2a
shows these effects. We break both references and citations
into self and non-self categories. A self citation or reference
means that there is a shared author between the two papers.
18% of the citations in hep-th are self citations. On a per-
paper basis, an average of 28% of a paper’s references cite its
authors past work and 34% of a paper’s citations are from
its authors. Papers with low citation and reference counts
generate a large proportion of the self citations thus the per-
paper averages are higher than the overall percentage. The
number of non-self citations peaks for papers submitted in
1996.

Because papers are often submitted to hep-th before being
published in a journal, we hypothesized that papers might
receive citations in two peaks. In particular, a paper could
be cited by other papers in hep-th as soon as they were
submitted to arXiv and again after being published in a
journal. Figure 2b shows the number of citations that each
paper received in the years following its submission to arXiv.
Starting with the overall mean (the thick line), we can see
that papers generally receive the most citations in the year
following submission to arXiv. Since the average time from
a paper’s submission to arXiw until it appears in a journal
is about one year, this peak likely coincides with journal
publication. It is interesting to note that papers receive an
average of two citations in the year prior to journal publi-
cation. This demonstrates the success of arXiv by allowing
people to cite work before it has been published.

The pattern of citations for papers submitted to arXiv in
1992 is also interesting. In this case, the peak is two years
after submission to arXiv. This delay can be explained by
arXiv’s growing popularity as the use of the Internet grew;
in 1992, their audience was limited. In later years (e.g.,
1995, 1999), the number of citations increases more quickly
due to the larger number of authors with Internet access.

Figure 2c shows the average number of non-self citations
for papers that have been published in a journal versus un-

Author Num. in Num. in Non-self

authority papers top 10 top 50 citations
Edward Witten 4 14 18716
Juan M. Maldacena 2 6 8076
Steven S. Gubser 2 4 5067
Igor R. Klebanov 1 4 5843
Leonard Susskind 1 4 5526
Joseph Polchinski 1 4 5535
Paul K. Townsend 1 3 4991
Stephen H. Shenker 1 2 2300
Michael R. Douglas 0 5 5787
Nathan Seiberg 0 3 9911
Cumrun Vafa 0 3 8594
Andrew Strominger 0 3 6480
Petr Horava 0 2 1936
Daniel Z. Freedman 0 2 1874

Table 1: Authors of the top 10 and top 50 most
authoritative papers and the total number of non-

self citations that these authors have received in hep-
th.

Author of Num. in Num. in Non-self
hub papers top 1% top 5% references
Igor R. Klebanov 15 31 5843
Arkady A. Tseytlin 10 29 5352
Steven S. Gubser 9 28 5067
Ofer Aharony 8 19 2307
Washington Taylor IV 6 7 2115
Alberto Zaffaroni 6 13 1369
Clifford V. Johnson 6 21 1615

Table 2: Authors of the top 1 and top 5 percent hub
papers and the total number of non-self references
that these authors have made.

published papers. Papers that are published in a journal
have a significantly higher average non-self citation rate than
papers that are published only on arXiv. Although many
people in the high energy physics community have access
to arXiv, it is clear that either journal publication is still
important in increasing a paper’s visibility, or that authors
writing highly cited papers still seek journal publication.

The hubs and authorities algorithm [6] can used on the
citation graph to identify authoritative papers and poten-
tial review papers. A hub is an object that points to many
authorities. This is likely to be a review paper. An au-
thority is an object that is pointed to by many hubs. Once
we identified the most authoritative papers, we examined
the authorship for these papers. Table 1 shows the authors
who have written at least two of the top 10 and top 50
most authoritative papers. As many of these names appear
again when we study influential authors, we discuss their
specifics in section 4. In general, the authors of these highly
authoritative papers include a number of award winners in-
cluding MacArthur Foundation fellows, Dirac winners, and
Fields medalists. They hail from many prestigious institu-
tions including the Institute for Advanced Studies at Prince-
ton, Princeton University, Harvard, Rutgers, Stanford, UC
Santa Barbara, Cambridge, UC Berkeley, and MIT.

Table 2 shows some authors who have written top hub pa-
pers in the database. We were interested in the question of
whether some authors write mostly review papers. In arXiv,
no author has written more than one of the top 10 or top 50
hub papers. However, if we examine the top 1% and top 5%,
several authors show up as frequently writing review papers.
The top three authors on this list, Klebanov, Tseytlin, and
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Figure 2: Temporal citation and reference patterns for papers submitted to arXiv.
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for published versus unpublished papers.

Attribute Through Score
arXiv area of paper Author 0.72
Num. downloads first 60 days Author 0.55
Journal name Author 0.69
Clustered topic of paper Author 0.54
Authority score Paper 0.74
on coauthor graph
arXiv area of cited paper Paper 0.70
Num. of coauthors Paper 0.45
Num. downloads first 60 days Journal 0.42

Table 3: Selected autocorrelation scores.

Attribute 1 Attribute 2 Score
For paper
Authority score Num. of citations 0.85
Area (from arXiv) References (binned) 0.68
Hub score Num. of references 0.62
Num. downloads first Num. of citations 0.57
60 days
Is paper published Citations (binned) 0.46
For author
Num. of publications  Num. of distinct coauthors 0.85
Num. of distinct Num. of non-self citations 0.59
coauthors
Table 4: Selected correlation scores between at-

tributes.

Gubser, are frequent co-authors. Table 2 contains no ma-
jor award winners and represents a slightly different list of
institutions than Table 1 including Princeton, Ohio State,
Rutgers, MIT, CERN and the University of Durham, UK.

3.2 Citation Data Dependencies

To better understand what makes papers popular and
identify trends and patterns in the citation data, we an-
alyzed correlations in the citation data. For discrete at-
tributes, we used chi-square corrected contingency coeffi-
cients; for continuous attributes we used correlation coef-
ficient [13] Tables 3 and 4 list significant correlations in
the data. All reported correlations are significant at the
p < 0.0001 level.

The number of times that a paper is downloaded is cor-
related with the number of non-self citations of that paper.
This is not surprising as one expects more frequently down-
loaded papers to be cited more frequently.

In addition to correlations among variables of a single ob-
ject, we also measured autocorrelation throughout the data
graph [3]. Autocorrelation is a statistical dependency be-
tween the values of the same variable on related objects, also
known as homophily [7]. For example, the number of down-
loads of a paper is autocorrelated through authors. This
means that if one of an author’s papers is frequently down-
loaded, other papers by the same author are likely to be
downloaded as well.

3.3 Predicting Popular Papers

We used relational probability trees (RPTs) [11] for sev-
eral modeling tasks. For each task, we sampled papers tem-
porally, training the model on papers from one year and
testing on the following year’s papers. To avoid edge ef-
fects, we considered only papers from 1995 to 2000. For
classification, the models considered characteristics of pa-
pers, their referenced papers, authors, and other past papers
written by the authors. Some example attributes include the
number of pages of the paper, its file size in KB, keywords,
the author’s number of past co-authors, the number of past
publications for each author, and the number of citations
received by a cited paper. Attributes were calculated for
each temporal sample. For instance, to predict the class
label on a paper submitted in 1997, the model considered
the citation/publication history of related objects up to and
including 1996.

The first modeling task involved predicting the number of
non-self citations that a paper will receive. We categorized
the number of non-self citations into quartiles: {0-1, 2-5, 6-
14, >14}. Default classification accuracy is approximately
25%. Over 5 training/test splits, RPT models achieved and
average accuracy of 44%. Although 44% is not an extremely
high accuracy, it is not likely that we would achieve a high
accuracy solely based on the information available in hep-th.
Such measures as the quality of the paper are not able to
be captured based on the performance of an author’s past
papers and this may not fully capture the situation.

One reason we chose to use RPT models is their selectiv-
ity. We can examine the features chosen by the trees and
identify the most relevant features for the classification task.
The RPT models identified that a paper has a probability
of 0.85 of receiving more than 14 non-self citations if 1) the



paper has more than 8 references 2) the authors have at
least 2 past papers with more than 8 non-self citations 3)
the authors have at least 25 past papers (that are at least
15 pages long) 4) at least 30% of cited work is unpublished.

4. AUTHOR ANALYSIS

The second part of our analysis focuses on the authors
in theoretical high-energy physics. We start by analyzing
the overall structure of the author subgraph and extend this
understanding to identifying influential authors. We define
several measures of influence and build a relational model
to identify and predict award-winning authors. Finally, we
predict potential award winners in theoretical high-energy
physics.

4.1 Co-Author Graph Analysis
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Figure 3: (a) Percent of the author graph that is one,
two, and three links away from several sets of the
top 1% of authors as well as from a random sampling
of 1% of authors. (b) Percent of the author graph
that is 1, 2, and 3 links away from Edward Witten
versus the average author.

We found that the high energy physics community is tightly
knit. In the graph of authors linked by co-authored rela-
tions, 7304 of the total 9200 authors belong to a single con-
nected component. As with the paper graph, other compo-
nents are all small (15 or fewer authors). When we narrowed
this set of authors to authors who wrote the top 1%, 5% and
10% of the authoritative papers, we found that in each case
the vast majority of the authors remained connected, with
only a very small percentage in separate components. This
provides evidence for the idea that influential scientists train
the up-and-coming influential scientists in their labs, either
as students or post-doctoral fellows [5], and co-author with
them.

We also found that authors who are highly cited or have
many distinct co-authors are more central to the author
graph than randomly selected authors. Figure 3 shows the
percentage of authors who are 1, 2, and 3 links away from
authors who wrote the top 1% of authority papers, authors
who have received the top 1% of non-self citations and the
top 1% of authors who have co-authored with different peo-
ple. These numbers are compared to 10 random samplings
of 1% of the authors. Each of these sets of influential authors
reaches a higher percentage of authors by following even just
one co-authored relation than random. This trend continues
for paths of length two or three. We also show the average
degree of separation from Edward Witten, who consistently
shows up as the most influential author in hep-th.

1.0

0.8

0.4

Cumulative percentage of non-self citations
0.2

0.0

T T T T T T T
0 1000 2000 3000 4000 5000 6000
Author index

Figure 4: Cumulative percent of non-self citations
received per author.

Before building a quantitative measure of an author’s in-
fluence, we examined the data for general trends. From
1995 through 2000, a relatively stable window for the data
set, 6405 authors submitted papers to arXiv. Of these au-
thors, on average each wrote 5 papers; the median was 2.
Sergei Odintsov (with 92 papers) and H. Lu and C.N. Pope
(each with 84) topped the distribution. As seen in Table
6, the top authors produce high numbers of papers by co-
authoring widely and frequently. The average number of
distinct co-authors is 5.5. Of the papers submitted to arXiv
in this period, each author published an average of 4 papers
in journals. On their combined papers, authors recieved an
average of 76 non-self citations, with a much lower median of
7. The top 10% of authors averaged 140 non-self citations.

The 80/20 rule or Pareto’s Principle states that, in power
law distributions, 80% of the mass is generally due to only
20% of the values (whether in science or other domains)[12,
8]. We investigated this rule in theoretical high-energy physics
by examining the number of non-self citations received on
a paper and author basis. In the hep-th data, 80% of the
non-self-citations go to 17.8% of the papers and 26.3% of
the authors wrote these papers. The full distribution for
authors is shown graphically in Figure 4.

4.2 Author Data Dependencies

Trends and dependencies for authors are summarized in
Tables 3 and 4. The number of an author’s publications
is correlated with the number of citations that the author
receives. This means that either authors who have more ci-
tations publish more frequently or that people who publish
more papers receive more citations. Perhaps more surpris-
ing is that the number of publications that an author has is
correlated with the number of distinct co-authors that the
author has published with. This indicates that frequently
published authors do not tend to work repeatedly with only
the same set of co-authors but continue to expand their re-
search to working with new people.

We expected that authors who write authoritative papers
are likely to write other authoritative papers but this was
not the case. A paper’s authority score was not autocorre-
lated through author which means that most authors will
write only a few authoritative papers in their lifetime.

Information about the research styles of authors can be
gained from autocorrelation scores. For instance, the num-
ber of distinct coauthors is autocorrelated through papers.
That is, if you publish with other authors who publish with



. Number of non-self citations received

. Total number of citations received

Number of papers written

Number of papers published in journals
Number of papers with over 12 citations
Number of co-authorships

Number of distinct co-authors

. Average non-self citations per paper

. Maximum non-self citations received on any paper
10. Percentage of papers published

11. Percentage of papers with over 12 citations
12. Weighted combination of 1, 4, 5, and 9.

R e

Table 5: Measures of author influence

many distinct people you are also likely to publish with
many distinct people. Within the arXiv data, an author
who publishes a paper in a particular journal is likely to
publish his other papers in that journal as well.

4.3 Analyzing Author Influence

After gaining a general understanding of author publica-
tion patterns, we hypothesized that author influence, that
is, overall reputation and impact, could be defined using the
measures shown in Table 5.

(a) Overall co-authorships

(b) Distinct co-authorships

Author Count Author Count
C.N. Pope 337 Cumrun Vafa 63
H. Lu 325 Gary W. Gibbons 60
S.D. Odintsov 296 Jan de Boer 56
Sergio Ferrara 233 Sergio Ferrara 55
Mirjam Cvetic 231 Antoine Van Proeyen 55

Table 6: (a) Authors who frequently co-author on
papers (including repeatedly co-authoring with the
same person). (b) Authors who frequently co-
author with different people on papers.

We ranked the authors who submitted papers to arXiv
from 1995 to 2000 according to each of these measures and
evaluated each measure according to the number of award
winning authors it ranked highly. We identified 55 win-
ners of prestigious awards, including Nobel prize winners,
MacArthur Foundation fellows, Dirac fellows, Guggenheim
recipients, Fields medal winners, and Alfred P. Sloan Foun-
dation winners. Based on the number of award winners
listed in the top 100 of each ranking, we found that most of
the above measures performed about equally, finding around
10 award winners. Measures 1 and 2 did best, with 14 win-
ners. We therefore chose measure 1 to be our canonical
influence measure, noting that the raw total of citations
is also the one used by popular research tools'. Figure 7
shows the top authors and their citation counts. Heading
the list, Edward Witten is a MacArthur Foundation fellow,
a Fields medalist, and a Dirac fellow. Juan Maldacena, also
a MacArthur Foundation fellow, is a younger researcher and
looks quite likely to become the most cited author as he
continues his research. This table also includes a number of
other award winners.

Surprisingly, measures 10 and 11, which we constructed
to indicate an author’s consistency of success, performed

! Citeseer: http://citeseer.nj.nec.com/mostcited.html and ISI Es-
sential Science Indicators: http://www.in-cites.com

Author Non-self citations # papers
Edward Witten 13806 59
Juan M. Maldacena 7334 39
Cumrun Vafa 6578 55
Nathan Seiberg 6258 45
Andrew Strominger 5371 44
Michael R. Douglas 5089 24
Igor R. Klebanov 5063 51
Joseph Polchinski 4815 25
Steven S. Gubser 4812 31
Ashoke Sen 4201 51

Table 7: Top-cited authors,
2000
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Figure 5: (a) Author influence vs. percent of pa-
pers published. (b) Author influence vs. distinct
co-authors

poorly on our validation task, identifying 2 or fewer win-
ners. Closer inspection shows that perfectionism is not the
key to success. The percentage of papers published in jour-
nals varied widely among award-winners, from 100% to 0%,
although the top 50% of influential authors did have a higher
rate (88%) of acceptance than the bottom half (67%). This
is shown graphically in Figure 5a. Percentage of papers
highly cited was better correlated with non-self citations
(see Figure 5b), but the measure performed poorly because
it placed authors with one of one paper highly cited above
those with 19 of 20 papers highly cited.

Figure 5b examines the correlation between citation count
and number of coauthors. As pointed to earlier, authors
with high citation counts write both frequently and widely.
Even in the middle of the scale, collaborating with 10-15
other people is typical. However, anyone with over 30 co-
authors is almost certain to be in the top 10%; presumably
one must be extremely well-regarded to be in that kind of de-
mand by collaborators. It is possible to have few co-authors
and still receive very high citation counts. In the top 10%
by non-self citation count, no one writes alone, and of the
top 100 authors, only one (Donam Youm) has fewer than
10 distinct coauthors. Table 6 displays the authors with the
highest co-author counts.

We wondered if a different combination of features could
identify a better measure of what differentiates award-winners
from other authors. To do this, we built an RPT using the
set of 55 award winners and a random sample of 55 non-
award winners. We performed 10-fold cross validation and
achieved an average accuracy of 78% with an area under
the ROC curve of 0.75. The tree chosen most frequently is
shown in Figure 6.

The first split in the tree, the author’s authority score, is
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Figure 6: RPT built to predict award-winning au-
thors.

based on the authority score received when running the hubs

and authorities algorithm over the undirected co-author graph.?
This roughly correlates with authors who co-author frequently

and whose co-authors also co-authored frequently.

Informed by the features in the tree as well as by our
other analyses, we conjecture that some of the following
highly cited authors, from the tops of the lists but relatively
lacking in major awards, may soon be due for recognition:
Andrew Strominger, Igor R. Klebanov, Ashoke Sen, Arkady
A. Tseytlin, Paul K. Townsend, Gregory Moore, and Hirosi
Ooguri.

5. PUBLICATION ANALYSIS

Influential authors are more likely to have their papers
accepted by a journal. It is also clear from Figure 2 that
published papers receive more citations. With this in mind,
the third part of our analysis studied what other factors
affected journal acceptance and used the RPT to predict
journal acceptance as well as publication venue.
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Figure 7: (a) Number of published and unpublished
papers submitted to arXiv each year. (b) Number
of years between a paper’s submission to arXiv and
it appearing in a journal.

Approximately 70% of the papers in arXiv have been pub-
lished in a journal. Figure 7a shows the total number of pa-
pers submitted to arXiv each year for both published and
unpublished papers. Although the total number of papers
increases each year, the proportion of published and unpub-
lished papers remains relatively constant. Figure 7b shows
the distribution of the number of years between a paper’s
submission to arXiv and it appearing in a journal. Most

2This analysis applied the hubs and authorities algorithm to the
undirected co-author graph. Hub and authority scores are equiv-
alent on undirected graphs, and we choose to refer to the resulting
scores as ”authority scores”.

papers, if published at all, are published within one year of
submission to arXiv. A small number are published up to 4
years later.
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Figure 8: Characteristics that differentiate pub-
lished and unpublished papers. Figures a, b, and c
are from all published and unpublished papers from
1995 to 2000 inclusive. Figure d is from a sample
of 3000 papers (1500 published in Physics Letters B
and 1500 unpublished).

We analyzed the differences between the published and
unpublished papers in several ways and discovered signif-
icant effects. Several of these effects are shown in Figure
8. The most surprising difference is that published papers
usually have more than one author while unpublished pa-
pers are much more frequently written by a single author.
This is an example of degree disparity [4] , where the number
of relations differs significantly between objects with differ-
ent class labels. A second finding is that unpublished pa-
pers have fewer references on average than published papers.
Last, is that published papers have more pages than unpub-
lished ones. This correlates with the finding that published
papers are revised more frequently. Likely, as a paper is
revised, additional text is added and the number of pages
grows. It is also possible that the unpublished papers are
fleshed out to longer reports to send to a journal and then
are more likely to be accepted.

5.1 Predicting Publication

For this task, we trained two types of relational models,
RPTs and relational multiple-instance learning [9] (RMIL),
to predict whether a paper will be published in a journal.
As explained in section 3.3, our analysis is limited to papers
submitted to arXiv from 1995 to 2000. To classify a paper,
the models used only information available at the time that
the paper was submitted.

As a preliminary analysis, we attempted to differenti-
ate between unpublished papers and papers published in
Physics Letters B, the most common publication venue for



arXiv papers. We sampled a set of 500 papers per year (3000
total), with equal proportion of published and unpublished
papers. Given the difficulty of this task, the RPT performed
well, with an average of 68% accuracy and 0.75 area under
the ROC curve. The model selected four attributes that dis-
criminate between unpublished and published papers: the
number of authors, the number of references, the paper’s
length and the paper’s filesize.

Figure 9a shows an example of a probability estimation
tree learned by the algorithm. According to the model, pub-
lished papers tend to have more authors and more references
than unpublished papers, illustrated in Figure 8a and b.

The algorithm also distinguished between published and
unpublished papers by size, measured in both kilobytes (KB)
and number of pages. Figure 8d shows the distribution of
paper length for published and unpublished papers in our
sample of 3000 papers. The graph clearly shows that most
Physics Letters B papers are between 5 and 15 pages in
length, whereas the unpublished papers have widely vary-
ing lengths. The tree (shown in Figure 9b) predicts that
papers over 16 pages in length and at least 13K in size were
unlikely to be published (P(+4)=0.03). After browsing a
small subset of these papers on arXiv, it appears that the
unpublished papers in the sample are either workshop pa-
pers (short papers, few references) or theses (long papers, a
single author).

We also trained an RPT on the entire set of published
and unpublished papers, and had moderately successful re-
sults (0.70 area under the ROC curve). The sample for each
year had between 2300 and 3100 papers, and approximately
75% of the papers each year are published. The algorithm
learned similar trees as the one learned for the previous task.
As shown in Figure 8c, paper length is not as discrimina-
tive in this larger sample, which perhaps explain the lower
performance on this larger set.

For RMIL, we created random samples of 200 papers (100
published and 100 unpublished papers) per year. RMIL
achieved an accuracy of 61% with an average AUC of 0.61.
RMIL identified that papers with 2 authors, papers that
cited papers published in Nuclear Physics B, and papers
that were cross-posted to areas other than hep-th were all
more likely to be published.

5.2 Predicting Publication Venue
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Figure 9: (a) RPT to predict whether a paper will be
published in Physics Letters B. (b) RPT to predict
between two popular journals.

We also trained an RPT for a related task, to differenti-
ate between papers published in one of two popular journals
(Nuclear Physics B. Particle Physics, Field Theory and Sta-
tistical Systems, Physical Mathematics and Physical Review

D. Particles, Fields, Gravitation, and Cosmology). These
are two of the most prevalent journals in the arXiv data-
base. We expected this task to be challenging because ap-
proximately 55% of the papers were written by authors who
have publications in both journals.

For each year, we sampled a set of 480 published papers,
half of which were published in Nuclear Physics B and half
in Physical Review D. For this task, RPTs achieved an aver-
age accuracy of 73% and an average AUC of 0.81 (see Table
8 for complete results). An example tree is shown in Figure
9b. The authors’ publication history, the cited papers, and
paper length are useful features to differentiate between pa-
pers published in these two journals. For example, if over
50% of an author’s past papers were published in Physics
Letters D, and less than 60% of cited papers were published
in Nuclear Physics B, then the paper is unlikely to be pub-
lished in Nuclear Physics B (P(+)=0.14).

6. COMMUNITY ANALYSIS

The final part of our analysis focused on identifying re-
search communities by identifying groups of topics and the
authors who publish in those topics. Our first approach to
community detection was to use a conventional data clus-
tering algorithm that considered only the paper’s textual
information for grouping papers into topics. However, re-
search papers contain multiple sources of information for
identifying topics; both textual content and citation struc-
ture can be used for clustering the documents. Our second
approach used a clustering algorithm that combined citation
structure and data information. Our third approach to clus-
tering examined the topics formed naturally by considering
the papers associated with each journal as distinct topics.

For the text-only clustering, we clustered according to a
TFIDF based measure of document similarity. The clus-
tering algorithm is based on an extension to the Lemur
Toolkit®. We created six clusterings using both the full pa-
per text and the abstracts and varying the similarity thresh-
old. The resulting topics have higher intra-cluster citations
than expected by chance (i.e. papers cite papers within the
same topic more often than papers in other topics). How-
ever, the topic labels are not autocorrelated through journals
or authors. Since we expect authors and journals to publish
papers from a relatively small set of topics, we view this
lack of autocorrelation as evidence of poor topic detection
and focused on using the relational citation information to
produce better clusters.

Research topics should be identifiable through groups of
papers with similar terms and many intra-group citations.
The web retrieval community has proposed a number of clus-
tering algorithms that attempt to exploit both document
contents and link structure to automatically group web doc-
uments into topics. One approach is to define a new similar-
ity metric between documents that incorporates link struc-
ture and then use standard data-clustering algorithms (e.g.
[16], [10]). Another approach is to weight the web graph
with term similarities and use conventional graph clustering
algorithms (e.g. [2]). We use the latter approach to cluster
hep-th research papers.

We based our second approach on previous work by [15] on
spectral partitioning algorithms using a normalized cut ob-
jective function. We use the citation graph to cluster papers,

3For more information, see http://ciir.cs.umass.edu



but modulate the strength of citation relationships by the
semantic relationship indicated through content similarity.
Our algorithm is quite similar to the approach used by [2] to
identify topics in sets of retrieved web pages. However, they
incorporate additional non-local link information into their
similarity metric through summary co-citation information.
We expect our algorithm to identify communities: groups of
papers that have similar content and are also highly inter-
connected.

We clustered a sample of 833 papers from the hep-th data-
base containing all papers in the years 1995-2000 with more
than 50 non-self citations. Our intention was to sample a
small set of authoritative papers that are likely to define
topics. The algorithm used the portion of the citation graph
that involved the 833 papers, weighted by the cosine simi-
larity between paper abstracts.

Journals may be useful for detecting topics because it
is common for journals to specialize and focus on research
in specific sub-fields. To investigate this, we examined the
20,826 papers in hep-th that have journal information avail-
able and clustered those papers into distinct topics as de-
termined by journal of publication. We eliminated clusters
that were too small to represent meaningful topics by re-
quiring that clusters contained at least 0.05% of the papers
in the collection.

6.1 Community detection

The spectral clustering technique, which examines both
content and citation information, produced 14 clusters vary-
ing in size from 2 to 285 papers. The number of papers in
each cluster is shown in Figure 10A. Table 8 includes ran-
domly selected titles from four examples clusters for subjec-
tive evaluation.

Our goal in this task was to identify communities of re-
search. Authors write multiple papers on the same topic
and are more likely to collaborate with other authors from
the same community. Journals generally focus on a small
number of topics and often specialize in particular topics.
Because of this, we expect research communities should be
identifiable through authors and journals, in addition to pa-
pers.

As a preliminary assessment of topics detection, we eval-
uated the correlation of clusters labels through authors and
journals. Paper topic is correlated with journal (corr=0.58).
Paper topics are autocorrelated through journals (corr=0.56)
and through authors (corr=0.54). These correlations indi-
cate that topics are associated with particular journals, that
journals are associated with particular topics and that au-
thors are associated with particular topics. This is evidence
that the topics successfully identify communities of research.
Figure 10b illustrates the autocorrelation of topic through
authors graphically, plotting the number of distinct topics
per author. These data are measured over all 478 authors
associated with the sample of 833 papers.

Because topics are autocorrelated through authors, we can
use the clusters to naturally partition the authors into com-
munities as well. To cluster the authors in relation to the
paper clusters, we assigned each author to the their most
prevalent cluster based on authorship. Ties were broken
randomly. Each cluster in Table 8 is labeled with the most
authoritative author associated with the cluster. We asso-
ciated journals with topics in the same way, assigning each
topic to its most prevalent journal. The associated journals

Cluster 2 : Sumit R.Das (251), Physical Review D
Absorption of Fixed scalars and the D-brane Approach to
Black Holes; Universal Low-Energy Dynamics for Rotating
Black Holes; Interactions involving D-branes; Black Hole
Greybody Factors and D-Brane Spectroscopy
Cluster 7 : Gary T.Horowitz (588), Physics Letters B
On D-Branes and Black Holes in Four Dimensions; The
Black Branes of M-theory; Counting States of Near-
Extremal Black Holes; Internal Structure of Black Holes
Cluster 10 : Juan M. Maldacena (1924), Journal of High
Energy Physics
Field theory models for tachyon and gauge field string dy-
namics; Super-Poincare Invariant Superstring Field The-
ory; Level Four Approximation to the Tachyon Potential
in Superstring Field Theory; SO(32) Spinors of Type I and
Other Solitons on Brane-Antibrane Pair
Cluster 13 : Ashoke Sen (4683), Nuclear Physics B
Dynamics of Anti-de Sitter Domain Walls; Gravitational
Stability and Renormalization-Group Flow; String Theory
on AdS3; The Holographic Bound in Anti-de Sitter Space

Table 8: Example paper titles grouped together by
spectral clustering. The authors shown are those
with the highest number of non-self citations to pa-
pers in the cluster (with this number in parenthe-
ses).

are listed along with authors in Table 8.
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Figure 10: (a) number of papers per cluster, (b)
Association of authors to paper clusters.

6.2 Topic analysis

We analyzed the topic clusters in several ways. We ex-
pect authors to cite papers within their own topic more than
papers outside of the topic. For each of our topic cluster-
ings, we calculated the actual and expected proportion of
intra-cluster citations for each cluster. We define the actual
proportion of intra-cluster citations for a cluster, C, as:

#of citations from C to C
the total number of citations from cluster C’

We define the expected proportion of intra-cluster citations
for a cluster, C, as:

the total number of papers in cluster C
the total number of papers in the collection”

The expected proportion represents the proportion of intra-
cluster citations we would expect given a uniform clustering
across all topics.

Figure 11a shows the expected and actual intra-cluster ci-
tation proportions for the spectral clustering. For all but



the smallest cluster, the proportion of intra-cluster citations
is significantly higher than the expected values. This is not
surprising, since the spectral algorithm is designed to min-
imize the normalized weighted-cut across clusters. We also
calculated intra-journal citations in a similar manner. Fig-
ure 11b shows the expected and actual intra-journal citation
proportions for each journal. As with the topic clusters, the
actual intra-citation values deviate significantly from the ex-
pected values.The difference between the actual and the ex-
pected intra-clustering values demonstrates that the topics
are cohesive with respect to citation patterns.
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Figure 11: (a) Expected and actual intra-clustering
citation ratios for spectral clustering (b) Expected
and actual intra-journal citation ratios.
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Figure 12: (a) Intra-cluster document similarity (b)
Intra-cluster coauthor frequency.

To evaluate intra-textual similarity we averaged the cosine
similarity across all pairs of documents within each cluster.
As a baseline measure we averaged the cosine similarity be-
tween papers in a given cluster and all papers in the sam-
ple. Figure 12a plots the intra-cluster averages compared to
the averages considering papers outside the cluster. For all
but the largest cluster, the intra-cluster cosine similarity is
much higher than expected, demonstrating that the topics
are cohesive with respect to content. Average similarity may
not the best measure to evaluate large clusters. Even when
drawn from the same topic, it will be unlikely that all pairs
of papers have similar content.

To evaluate whether the authors are more likely to col-
laborate within the clusters, we analyzed the coauthor links
within clusters to see if the proportion of coauthor links
within clusters was higher than expected. Figure 12b shows
the expected vs. actual proportion of intra-cluster coauthor
links. The zero value for cluster 4 is due to the fact that
no authors were assigned to cluster 4 as their primary area.

Collaboration is significantly higher with these clusters than
would be expected by chance. This result further validates
the claim that the spectral clustering has successfully iden-
tified research communities.

7. CONCLUSIONS

Based on our analysis, theoretical high-energy physics ap-
pears to be a healthy scientific community. Both the cita-
tion and authorship graphs reflect a pattern of tightly knit
communication via the formal and informal scholarly litera-
ture. The community publishes a large numbers of papers,
and the temporal pattern of citations indicates the rapid
uptake and use of relevant new work. Despite the existence
of “stars” such as Edward Witten, the papers of individual
authors can vary greatly in their authority scores, indicating
that papers are cited more for their innovative content than
the pre-existing prominence of their author.

This analysis raises the possibility, already explored by the
field of scientiometrics [14], of assessing and comparing the
health of different scientific communities and subcommuni-
ties. The statistical techniques under development within
relational learning offer an improved toolbox for the study
of scientific networks, particularly as reflected in patterns of
publication, citation, and downloading. Central to our anal-
ysis in this paper were: 1) techniques for calculating mea-
sures that use a combination of the attributes and structural
of a relational data set; and 2) algorithms for learning statis-
tical models that search a vast space of possible structures
and parameter values to select those features most predic-
tive of an attribute of interest. Both of these classes of
methods allowed simultaneous consideration of multiple ob-
ject and relation types, rather than only a single object and
relation type, as is common in much prior work in citation
analysis. Finally, consolidation of authors was important to
the analysis above, and the relational structure was a strong
contributor to how authors were consolidated.
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APPENDIX
A. CREATING THE SCHEMA

The data available for task 4 was in the form of INTEX files,
text abstract files, and the paper citations. From the abstract
files, we extracted paper properties such as title, file size, jour-
nal reference, and submission dates. We used the earliest of the
revision dates and the SLAC date as the best estimate of author-
ship date. Author names and institutions were parsed out of the
Authors field, and the email address of the submitter was asso-
ciated with the best-matching author name. Since institutions
were not in a standardized format, we used the domain name of
the submitter email address as a surrogate. Since the same au-
thors, journals, and domains appear many times, we pulled them
out into separate objects.

Journals were consolidated by hand; that is, we looked up
their full names from the abbreviations, and coalesced differently-
spelled references into the same object. The domains were given

similar_email_domain
Email Email
Domain 1 Domain 2
Email_affiiation Email_affiiation

similar_name

(a) (b) (c)

@ Cites.

Co-Authored Co-Authored Authored Authored

Figure 13: Relational evidence of duplicate au-
thors. (a) Authors with a similar name who have
co-authored with the same third-party. (b) Authors
who have cited a paper written by an author with
a similar name. (c¢) Authors with similar email do-
mains and the same username.

similarity links based on matching suffixes to facilitate identify-
ing distinct institutions, and for use during author consolidation.
We performed a nominal amount of hand data cleaning to cor-
rect for spelling errors or problems in formatting from the original
submission form.

B. AUTHOR CONSOLIDATION

Before analyzing the authors, we needed to identify duplicate
author entries. Many hep-th authors publish under variants of
the same name, e.g., “E.M.C. Abreu” and “Everton M.C. Abreu”;
with other pairs like “J. Adams” and “J.A. Adams”, the number
of distinct identities was unclear. We began with the assumption
that no two people had submitted papers under the same name
(although this is rare, we did find a small number of instances in
hand-checking the most frequent last names). We labelled pairs
as similar if, after correcting for inconsistencies in punctuation
and accents, the last names and the first initial of the first names
matched. Of the initial 13,185 distinct author names, over 7500
had candidate matches to others.

Possible evidence for duplicate authors came from several sources.
First, authors had to have similar names, and co-authors could
never be consolidated. Another piece of evidence arose from au-
thor email addresses: using the same email address for multiple
papers meant the authors were likely to be the same person. This
was not conclusive evidence, because we found instances of people
sharing email addresses. If a candidate pair’s last name was rare
(i.e. of the whole database, was only found on these two peo-
ple), this boosted the evidence. For example, a number of people
matched on the last name “Lee”, but the only two authors with
the last name “Znojil”.

We also identified evidence for duplicate authors based on the
relational neighborhood of the authors, as depicted in Figure 13.
If two authors with similar names had each coauthored with the
same third person, the two were likely to be the same person.
Similarly, since people frequently cite their own work, we reasoned
that if an author cites someone with a similar name, the two
may well be the same person. Last, if two authors had the same
username at similar email domains, this was considered to be
comparable to using the same email address.

Using these guidelines, we iteratively identified and consoli-
dated duplicate authors until quiescence. Because evidence in-
volving third party authors was often not available until the
third parties had themselves been merged correctly, this took five
rounds of consolidation. At completion, we had 9200 distinct
authors. Due to the noisy nature of the data, the final author
set is not likely to be perfectly accurate, but as an example, it
correctly merged all eight variations of the name “lan Kogan,”
and of the top ten authors from Table 7, they were spread across
11 author objects (i.e. one mistake) instead of an initial 28. In
addition, while the initial author graph contained 2206 connected
components, after consolidation that number decreased to 1269.



