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Abstract
Two common characteristics of relational data
sets — concentrated linkage and relational auto-
correlation — can cause learning algorithms to
be strongly biased toward certain features, irre-
spective of their predictive power. We identify
these characteristics, define quantitative meas-
ures of their severity, and explain how they pro-
duce this bias. We show how linkage and auto-
correlation affect a representative algorithm for
feature selection by applying the algorithm to
synthetic data and to data drawn from the Inter-
net Movie Database.

1.  Introduction
Recent efforts to learn statistical models from relational
data include work on stochastic logic programming
(Muggleton 2000), probabilistic relational models (Getoor
et al. 1999), and relational Bayesian classifiers (Flach and
Lachiche 1999). Relational data representations greatly
expand the range and applicability of machine learning,
but the greater expressive power of relational representa-
tions produces new statistical challenges. Work on rela-
tional learning often diverges sharply from traditional
learning algorithms that assume data instances are statisti-
cally independent. Statistical independence of instances is
among the most enduring and deeply buried assumptions
of traditional machine learning methods, and it is contra-
dicted by many relational data sets.
In this paper, we focus on how dependence among the
values of a class label in relational data can complicate
feature selection in methods for machine learning. We
define relational feature selection and give a simple ex-
ample of how such a procedure can be biased. We define
quantitative measures of concentrated linkage (L) and
relational autocorrelation (C'), two common characteris-
tics of relational data sets. We show how high values of L
and C' reduce the effective sample size of some data sets,
introduce additional variance, and lead to feature selection
bias. To our knowledge, no current relational learning
algorithm accounts for this bias. We show how to esti-
mate the variance of scores and discuss using those esti-
mates to improve feature selection in relational data.

1.1  Relational Data and Statistical Dependence
Figure 1 presents two simple relational data sets. In each
set, instances for learning consist of subgraphs containing
a unique object x, an object y, and one or more other ob-
jects. Objects x contain a class label and objects y contain
an attribute that will be used to predict the class label of x.
Figure 1a shows a data set where objects x and y have a
one-to-one relationship and where the class labels on in-
stances are independent. Figure 1b shows instances where
objects x and y have a many-to-one relationship and
where the class labels are dependent.1
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Figure 1: Example relational data sets with independent in-
stances (a) and dependent instances (b).
We will spend the majority of the paper considering data
sets similar in structure to Figure 1b where each subgraph
consists of multiple relations and each relation may pro-
duce dependencies among the instances. For simplicity,
our experiments assume that all relations are binary,
placing this work somewhere between multiple instance
learning and full first-order logic (DeRaedt 1998), al-
though  the statistical effects we investigate appear to
affect a wider range of relational learning algorithms.

—————
1 Throughout this paper, we assume that all linkages among instances
that could introduce statistical dependence are represented explicitly as
links (edges) in the data graph.



1.2  Relational Feature Selection
This paper focuses on feature selection, a component of
many learning algorithms. We define feature as a map-
ping between raw data and a low-level inference. For ex-
ample, a feature for a propositional data set about medical
patients might be temperature > 99°F. In this case, a
feature combines an attribute (temperature), an operator,
and a value. Typically, many features are combined into a
higher-level model such as a tree or rule set. We define
feature selection as any process that chooses among fea-
tures, either by identifying the best, selecting some and
rejecting others, or merely placing a partial or total or-
dering over all possible features. This definition is
broader than some (e.g., John, Kohavi, and Pfleger 1994),
but it emphasizes the central role of feature selection in
machine learning algorithms, including algorithms for
learning decision trees, classification and association
rules, and Bayesian nets. Feature selection is central to
any learning algorithm that forms models containing a
subset of all possible features.
We focus here on relational feature selection. Relational
features are used by models that predict the value of an
attribute on particular types of objects (e.g., the box office
receipts of movies) based on attributes of related objects
(e.g., characteristics of the movie’s director, producer,
actors, and studio). Relational features are similar to the
features described above in that they identify both an at-
tribute and a way of testing the values of the attribute.
However, relational features may also identify a particular
relation (e.g. ActedIn(x,y)) that links a single object x (e.g.
movie) to a set of other objects Y (e.g. actors). If this is
the case, the attribute referenced by the feature may be-
long to the related objects Y (e.g. age), and the test is con-
ducted on the set of attribute values on the objects in Y.
For example, the relational feature:
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Max(Age(Y)) > 65 where Movie(x), Y = {y | ActedIn(x,y)}

determines whether the oldest of the actors in movie x is
over 65. Throughout this paper, we will use f(x) to refer
the value of attribute f for a single object x, and f(X) to
refer to the set of values of attribute f for all x ∈ X.
A central characteristic of many relational data sets is that
two or more objects of one type (e.g., movies) can both be
connected to the same object of another type (e.g., a stu-
dio). We expect that this shared linkage represents some
statistical associations present in the world. That is, linked
objects are not statistically independent.
By examining relational feature selection in general, this
work is relevant to nearly any learning algorithm that
compares and selects among different relational features,
including algorithms for inductive logic programming
(Dzeroski & Lavrac 2001) and algorithms for construct-
ing relational versions of commonly used model repre-
sentations such as rules, trees, and Bayesian networks
(Getoor et al. 1999).

1.3  An Example: Bias in Relational Feature Selection
Given that instances in relational data may not be inde-
pendent, we should examine how such relational structure
could affect feature selection. Below we show how rela-
tional structure and dependence among values of the class
label can bias relational feature selection. To do this, we
created data sets about movies and analyzed them with a
simple algorithm for relational feature selection. Specifi-
cally, we created and analyzed a family of relational data
sets whose relational structure was drawn from the Inter-
net Movie Database (www.imdb.com). We gathered a
sample of 1383 movies released in the United States be-
tween 1995 and 2000. In addition to movies, the data set
contained objects representing actors, directors, produc-
ers, and studios. The data schema is shown in Figure 2.

Movie
receipts

random1
Actor

random2
Director
random5

Producer
random4

Studio
random3

ActedIn Directed

ProducedMade

Figure 2: Schema for the movie data sets. Object and link types
are shown in roman; attributes are shown in italics.
We created a learning task using a single attribute on
movies — opening-weekend box office receipts. We dis-
cretized that attribute so that a positive value indicates a
movie with more than $2 million in opening weekend
receipts (prob(+)=0.55). We call this discretized attribute
receipts and use it as a binary class label. For each of
1000 trials, we also generated a random binary attribute
on each of the five types of objects (movies, studios, ac-
tors, directors, and producers).
In each trial, we applied an algorithm for relational fea-
ture selection, using features formed from the random
attributes. The algorithm uses the following relational
feature for each attribute f(x) and each attribute value af:
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Mode( f (Y )) = a f
where Movie(x), Y = {y | LinkedTo(x,y)∧Type(y) = t}

which determines whether the modal value of f on the
objects of type t linked to x is equal to af.
The correlation of each relational feature with the class
label was calculated using chi-square and the features
were ranked by their chi-square values. In each trial, we
identified the object type of the top-ranked feature.
Given that all attributes were created randomly, we would
expect an algorithm to select all features with equal prob-
ability, since no attribute is useful for predicting receipts.
However, as shown in the first column of Table 1, fea-
tures formed from studio objects have a much higher
probability of selection than features formed from movies,
actors, directors, or producers.



Table 1: Probability of feature selection
Object
Type

Receipts
Class Label

Random
Class Label

Studio 0.742 0.214
Director 0.059 0.218
Producer 0.073 0.174
Actor 0.072 0.186
Movie 0.054 0.208

This effect is eliminated if the values of receipts are as-
signed randomly (with the same probability as before)
instead of using the actual values of receipts. These re-
sults are shown in the second column of Table 1. For a
random class label, the algorithm has no bias toward stu-
dio objects. It behaves in the way we would expect, se-
lecting among features formed from different object types
with roughly equal probability. This raises obvious and
intriguing questions: Why does the algorithm prefer ran-
dom features formed from studios, and what does this tell
us about relational feature selection in general?

2.  Linkage and Autocorrelation
Our analysis indicates that bias such as that shown in Ta-
ble 1 occurs when algorithms ignore two common char-
acteristics of relational data — concentrated linkage and
relational autocorrelation. We define these characteristics
formally below. Informally, concentrated linkage occurs
when many objects are linked to a common neighbor, and
relational autocorrelation occurs when the values of a
given attribute are highly uniform among objects that
share a common neighbor. The example in Figure 1b
shows several movies linked to an individual studio and
shows that movies made by the same studio have highly
correlated class labels.

2.1  Concentrated Linkage
We will define concentrated linkage L(X,P,Y) with respect
to two sets of objects X and Y and a set of paths P such
that the relation p(x,y) holds. Paths are composed of k
links and k-1 intervening objects, where k≥1. Each path
represents a series of relations linking an object in X to an
object in Y. For example consider the path from linking
two movies, m1 and m 2, made by the same studio. The
path is formed from two Made links, Made(m1,s1) and
Made(m2,s1). For convenience we treat all links as undi-
rected in order to refer to meaningful sequences of rela-
tionships as paths. We assume that paths in P are unique
with respect to a given (x,y) pair; if two or more paths
between x and y exist in the data, they are collapsed to a
single element of P.
Definition: DyX is the degree of the object y with respect
to a set of objects X. That is, the number of x∈X such that
p(x,y)∈P. For example, DyX might measure, for a given
studio y, the number of movies (X) it has made. !

Definition: Single linkage of X with respect to Y occurs in
a data set whenever, for all x∈X and y∈Y:
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DxY =1 and DyX ≥1 !

In these cases, many objects in X (e.g., movies) connect to
a single object in Y (e.g., a studio). We use single linkage
as an important special case in future discussions.
Definition: The concentrated linkage L(x,X,P,Y) of an
individual object x (e.g., a movie) that is linked to objects
Y (studios) via paths P is:
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the quantity (DyX -1)/DyX within the summation is zero
when the DyX is one, and asymptotically approaches one
as degree grows, and thus is a reasonable indicator of
L(x,X,P,Y), given single linkage of x with respect to Y.
Because x may be linked to multiple nodes in Y, we define
the average across all nodes yi linked to x, and divide by
an additional factor of D xY to rate single linkage more
highly than multiple linkage.
Definition: The concentrated linkage L(X,P,Y) of a set of
objects X (e.g., all movies) that are linked to objects Y is:
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Given particular types of linkage, L can be calculated
analytically from the sufficient statistics |X| and |Y|. For
example, in the case of single linkage of X with respect to
Y, L = (|X|-|Y|)/|X|. For example, the data set shown in
Figure 1b exhibits single linkage, so L(X,P,Y) = 0.60.
Propositional data also display single linkage, and be-
cause |X|=|Y|, L(X,P,Y) = 0. Calculations of several types
of linkage are shown for the movie data in Table 2.

Table 2: Linkage in the movie data
Linkage Type Value
L(Movie, Made, Studio) 0.91
L(Movie, Directed, Director) 0.23
L(Movie, Produced, Producer) 0.08
L(Movie, ActedIn, Actor) 0.01

In addition to the movie data, we have encountered many
other instances of concentrated linkage. For example,
while studying relationships among publicly traded com-
panies in the banking and chemical industries, we found
that nearly every company in both industries uses one of
only seven different accounting firms. In work on fraud in
mobile phone networks, we found that 800 numbers, 900
numbers, and some public numbers (e.g., 911) produced
concentrated linkage among phones. Concentrated linkage
is also common in other widely accessible relational data
sets. For example, many articles in the scientific literature
are published in a single journal and many basic research



articles are cited in single review articles. On the Web,
many content pages are linked to single directory pages
on sites such as Yahoo.

2.2  Correlation and Autocorrelation

We will define relational correlation C(X,f,P,Y,g) with
respect to two sets of objects X and Y, two attributes f and
g on objects in X and Y, respectively, and a set of paths P
that connect objects in X and Y.
Definition: Relational correlation C(X,f,P,Y,g) is the cor-
relation between all pairs (f(x),g(y)) where x∈X, y∈Y and
p(x,y)∈P. !

Given the pairs of values that these elements define, tra-
ditional measures such as information gain, chi-square,
and Pearson's contingency coefficient can be used to as-
sess the correlation between values of the attributes f and
g on objects connected by paths in P. The range of C de-
pends on the measure of correlation used.
We can use the definition of relational correlation
C(X,f,P,Y,g) to define relational autocorrelation as the
correlation between the same attribute on distinct objects
belonging to the same set.
Definition: Relational autocorrelation C' is:
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C'(X, f ,P) ≡ C(X, f ,P,X, f ) where ∀p(x i,x j )∈ P x i ≠ x j !

For example, C' could be defined with respect to movie
objects, the attribute receipts on movies, and paths formed
by traversing Made links that connect the movies to an
intervening studio.
If the underlying measure of correlation varies between
zero and one, then C'=1 indicates that the value of the
attribute for a specific node xi is always equal to all other
nodes xj reachable by a path in P. When C'=0, values of
f(X) are independent. Table 3 gives estimates of relational
autocorrelation for movie receipts, linked through studios,
directors, producers, and actors. For a measure of correla-
tion, Table 3 uses Pearson's corrected contingency coeffi-
cient (Sachs 1992), a measure that produces an easily
interpreted value between zero and one. Autocorrelation
is fairly strong for all object types except actors.
In addition to the movie data, we have encountered many
other examples of high relational autocorrelation. For
example, in our study of publicly traded companies, we
found that when persons served as officers or directors of
multiple companies, the companies were often in the
same industry. Similarly, in biological data on protein
interactions we analyzed for the 2001 ACM SIGKDD
Cup Competition, the proteins located in the same place
in a cell (e.g., mitochondria or cell wall) had highly auto-
correlated functions (e.g., transcription or cell growth).
Such autocorrelation has been identified in other domains
as well. For example, fraud in mobile phone networks has

been found to be highly autocorrelated (Cortes et al.
2001). The topics of authoritative web pages are highly
autocorrelated when linked through directory pages that
serve as "hubs" (Kleinberg 1999). Similarly, the topics of
articles in the scientific literature are often highly autocor-
related when linked through review articles.

Table 3: Autocorrelation in the movie data
Autocorrelation Type Value
C'(Movie,Receipts,Made|Studio|Made) 0.47
C'(Movie,Receipts,Directed|Director|Directed) 0.65
C'(Movie,Receipts,Produced|Producer|Produced) 0.41
C'(Movie,Receipts,ActedIn|Actor|ActedIn) 0.17
Note: We use a the notation a|x|b to denote paths with links

of type a and b and intervening objects of type x.

We have defined relational autocorrelation in a similar
way to existing definitions of temporal and spatial auto-
correlation (see, for example, Cressie 1993). Autocorrela-
tion in these specialized types of relational data has long
been recognized as a source of increased variance. How-
ever, the more general types of relational data commonly
analyzed by relational learning algorithms pose even
more severe challenges because the amount of linkage can
be far higher than in temporal or spatial data and because
that linkage can vary dramatically among objects.
Relational autocorrelation represents an extremely im-
portant type of knowledge about relational data, one that
is just beginning to be explored and exploited for learning
statistical models of relational data (Neville and Jensen
2000; Slattery and Mitchell 2000). Deterministic models
representing the extreme form of relational autocorrela-
tion have been learned for years by ILP systems. By rep-
resenting and using relational autocorrelation, statistical
models can make use of both partially labeled data sets
and high-confidence inferences about the class labels of
some nodes to increase the confidence with which infer-
ences can be made about nearby nodes.
However, as we show below, relational autocorrelation
can also greatly complicate learning of all types of rela-
tional models. As we seek to represent and use relational
autocorrelation in statistical models of relational data, we
will need to adjust for its effects when evaluating more
traditional types of features in these models.

2.3  Discussion

The results reported so far for concentrated linkage and
relational autocorrelation provide important clues to the
behavior reported in Table 1. Figure 3 plots all objects in
the movie data in terms of their linkage and autocorrela-
tion with respect to movies, as reported in Tables 2 and 3.
The contours in the plot delineate regions where the se-
verity of the bias introduced by linkage and autocorrela-
tion is approximately equal. The contours are a 2-D view
of the results reported in Figure 4 (described in detail in
section 3.1). Studios objects in the movie data have the



highest combination of concentrated linkage and rela-
tional autocorrelation. Features that use studios also show
the greatest bias in the experiments reported in Table 1.
While directors have a higher value of autocorrelation C',
their linkage L is quite low. As we will show in the next
section, when linkage and autocorrelation are both high
for a single type of object, they bias learning algorithms
toward features formed from objects of that type.
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Figure 3: Relational autocorrelation vs. concentrated linkage

3.  Effects of Linkage and Autocorrelation
Linkage and autocorrelation cause feature selection bias
in a two-step chain of causality. First, linkage and auto-
correlation combine to reduce the effective sample size of
a data set, thus increasing the variance of scores estimated
using that set. Relational data sets with high linkage and
autocorrelation contain less information than an equiva-
lently sized set of independent data. This reduction in
effective sample size increases the variance of parameter
estimates made with the data. Just as small data samples
can lead to inaccurate estimates of the scores used to se-
lect features, concentrated linkage and autocorrelation can
cause the scores of some features to have high variance.
Second, increased variance of score distributions in-
creases the probability that features formed from objects
with high linkage and autocorrelation will be selected as
the best feature, even when these features are random.

3.1  Decreased Effective Sample Size
Below, we prove a special case of linkage and autocorre-
lation decreasing effective sample size, for data exhibiting
single linkage and in which C'=1 and L≥0. Then we ex-
plore a wider array of values for C' and L via simulation.
Specifically, in data sets exhibiting single linkage, and
where L≥0 and C'=1, the variance of scores estimated
from relational features depends on |Y| (the number of
objects with an attribute value) rather than |X| (the number
of objects with a class label). For example, in the movie
data, if autocorrelation of movie receipts through studios
were perfect (C'=1), then the variance of scores for pre-
dicting receipts with a relational feature formed from stu-

dios (e.g., location) would depend on the number of stu-
dios in the sample rather than the number of movies.
Theorem: Given a relational data sample with objects X,
objects Y, paths P, a class label f(x), and an attribute g(y),
where C'=1, DxY=1, and DyX≥1, the sampling distribution
for the scoring function S(f,g) will have the same variance
as it would for a data set with |Y| independent instances.
Proof sketch: Consider the set of independent instances
shown in Figure 1a, where L=0 (and, thus, |X| = |Y|). If we
alter the data set so that L>0 (and, thus, |Y|<|X|), but re-
tain the constraints that C'=1, DxY=1 , and DyX≥1, then
additional objects X will be added, and their correspond-
ing values of f(x) will match the value of other objects X
already connected to a given Y. Such alterations increase
the number of objects |X|, but they do not alter the num-
ber of possible arrangements of values of f and g. That
number remains the same, because the value of f(x) for
additional objects X linked to a given Y is completely de-
termined by the existing value of f(x), given that C'=1.
Each sample for which L>0 , C'=1 , and DxY=1 corre-
sponds directly to a sample for which L=0 though the
latter sample contains fewer objects X. The number of
ways of assigning values of f and g to objects is identical,
the probability of each of these corresponding data sets
remains equal, and the sampling distribution of any scor-
ing function will also be identical. !

In the independent case, the effective sample size N = |X|
= |Y|. In the case where L>0, the effective sample size N =
|Y|<|X|. In less extreme cases, where 0<C'<1, the effective
sample size lies somewhere between |X| and |Y|. In addi-
tion, forms of linkage where DxY>1 complicate estimates
in ways we do not consider formally in this paper, al-
though our experimental results below give some indica-
tions of the effect.
Simulation can demonstrate the effect of varying values
of C' and L. We generated data sets with 1000 objects X
with varying degrees of concentrated linkage to, and rela-
tional autocorrelation through, another set of objects Y (|Y|
varies between 1000 (L=0) and 100 (L=0.9)). We gener-
ated a binary class label on X and a binary attribute on Y,
both drawn from a uniform distribution. At each level of
linkage and autocorrelation, we generated 10,000 sets,
calculated the chi-square score between the attribute and
class label for each set, and then estimated the 95% confi-
dence threshold for the resulting distribution. Because
chi-square increases proportionally with sample size for a
given level of association, we can find the effective sam-
ple size by dividing the 95% critical value of chi-square
for independent data (3.84) by the 95th percentile of the
distribution of simulated scores and multiply by the sam-
ple size (1000). The results are summarized in Figure 4.
In Figure 4, effective sample size drops monotonically
with increases in C' and L. At extreme values of linkage
and autocorrelation, effective sample size is reduced by
almost an order of magnitude.
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Figure 4: Effective sample size decreases with L and C'
We used similar means to gauge the effects of linkage and
autocorrelation on the movie data, and estimated effective
sample sizes for each object type. We examined the dis-
tribution of 200 random relational features formed using
each object type. Autocorrelation and linkage should have
no effect on movies (because movies are not linked di-
rectly to other movies), and the score distributions for
features formed from movies approximately match the
distribution of chi-square expected under the assumption
of independent instances. The other distributions, how-
ever, differ substantially from this expectation. Table 4
shows the effective sample sizes obtained by minimizing
the sum of the absolute difference at all percentiles of the
empirical and theoretical chi-square distributions (other
measures of similarity produced similar results).2 In all
cases, the assumed sample size would be equal to, or
larger than, the number of movies (1383).

Table 4: Effective sample size in the movie data
Object Type

Scaling
Factor

Effective
Sample Size

Studio 0.026 36
Director 0.842 1164
Producer 0.615 851
Actor 0.702 971
Movie 1.000 1383

Figure 5 shows the distributions of scores obtained from
testing the relational features used to construct Table 1.
The dotted line shows the score distribution for studios.
The solid lines show the overlapping distributions for
movies, actors, directors, and producers. These latter dis-
tributions have quite similar variance, but the variance for
features on studios is much higher. For these experiments,
we used a chi-square statistic augmented with a sign, to

—————
2 The effective sample size estimated for studios is almost certainly too
small, given that it is less than the total number of studios in the sample
(128). The sampling distribution obtained for random attributes on stu-
dios had more density in the tails than the theoretical distribution for chi-
square, and thus our similarity measures may not be adequate. We are
exploring alternative methods for estimating effective sample size.

indicate which diagonal of the contingency table con-
tained the most mass (see Sachs 1992). In this way, we
obtained a symmetric scoring function and we were able
to tell if the utility of a given feature changed sign be-
tween data sets.
Evidence in Table 1, Figure 3, Table 4 and Figure 5, all
points to common conclusions. Studios have the highest
combination of linkage and autocorrelation, and the dis-
tributions of scores for features formed from studios dis-
play the highest variance. This variance reduces the ef-
fective sample size, and causes feature selection algo-
rithms to be biased in favor of these features.

3.2  Feature Selection Bias
Given that the scores of some features are estimated with
higher variance than others, why should this lead to a bias
in favor of these attributes? Recent work on the statistical
effects of multiple comparison procedures on score distri-
butions (Jensen & Cohen 2000) provides an explanation.
Features are usually formed by a local search over possi-
ble parameters of the feature. For example, forming the
feature mentioned earlier — Max(Age(Y)) > 65 — could
involve local search over many possible aggregation
functions (Max, Min, Average), operators (>, <, =), and
values ([0,100]). This local search is usually done prior to
feature selection, so only the best feature from each fea-
ture "family" is compared.
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Figure 5: Distributions of random scores
Jensen and Cohen (2000) prove that, if the score of each
member of a feature family is estimated with some vari-
ance, then the estimated score of the best member (the
maximum score) will be a biased estimator of the fea-
ture’s true score. In addition, that bias increases as the
variance of the score distributions increases. Thus, the
estimated score of features formed from objects with high
linkage and autocorrelation (e.g., studios) will be more
biased than those formed from objects with low linkage
and autocorrelation (e.g., actors).



Results from the movie data clearly indicate high variance
in estimated scores. Figure 7 shows score distributions
based on multiple training/test splits of the movie data,
where one set was used to select the best feature from
each feature family, and the other set was used to obtain
an unbiased score estimate. The scores vary widely, but
features formed from studios have the highest variance.
This experiment also indicates the competing pressures on
feature selection algorithms in the face of high variance.
Some random features on studios have variance suffi-
ciently high to allow them to exceed the scores of weakly
useful features on other objects. However, some non-
random attributes on studios appear to form useful fea-
tures, and any method for discounting high-variance fea-
tures should not discard these.

4.  Estimating Score Variance by Resampling
The first step toward correcting for high variance is to
obtain accurate estimates of variance for each feature. In
this section, we describe and test an approach to estimat-
ing score variance by bootstrap resampling.

4.1  Bootstrap Resampling
Bootstrap resampling is a technique for estimating char-
acteristics of the sampling distribution of a given pa-
rameter by generating multiple samples by drawing, with
replacement, from the original data as if it were the
population (Noreen 1989). Each generated sample is
called a pseudosample and contains as many instances as
the original data set. Some instances in the original data
set will occur multiple times in a given pseudosample,
and others will not occur at all. Resampling can be used to
estimate the variance of a parameter by estimating the
parameter on hundreds of pseudosamples, and then find-
ing the variance of the resulting distribution of scores.
To estimate the variance of a given score distribution us-
ing resampling, we draw links randomly and with re-
placement from all links in P until the number of links in
the pseudosample is equal to the number in the original
data. For example, to estimate variance for a relational
attribute formed from studios, we would sample paths
formed from Made links. Then we create objects based on
the endpoints of the paths in the pseudosample. For ex-
ample, we would create movie and studio objects based
on the movies and studios that form the endpoints of the
Made links in our pseudosample.
In most cases, we create a single object in response to
many paths in the pseudosample with the same endpoint.
For example, we would generally link many movies to a
single studio object we have created for the pseudosam-
ple. In some cases, however, the degree of the resulting
object in the pseudosample exceeds the degree of any
similar object in the original data. In this case, we create
an additional version of that object to keep linkage similar

between the original sample and the pseudosamples. For
example, movies in our data have single linkage to stu-
dios, thus we create extra movies in pseudosamples when
the same link between movies and studios is sampled
twice. The distribution of the scores calculated from many
pseudosamples forms a distribution from which the vari-
ance can be estimated.
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Figure 7: Scores of movie features and variance estimates
We evaluated the quality of pseudosamples by comparing
their linkage, autocorrelation, and attribute distributions to
the original sample. The measured quantities remain sta-
ble over all the pseudosamples and closely resemble the
values in the original sample.

4.2  Using Resampled Estimates
While resampling can be used to estimate the variance of
scores for particular features, the use of those estimates to
improve feature selection remains an open problem. Fig-
ure 6 demonstrates the broad outlines of the problem.
Given a set of scores for features and estimates of their
sampling distributions, which features should be selected?
In Figure 6, score B is clearly preferable to A, because it
has both higher expected value and lower variance. How-
ever, scores B and C are not easily ranked because C has a
higher expected value but also a higher variance.
We have tried two obvious ranking schemes without suc-
cess. In the first, we ranked features based on their lower
confidence limits (e.g., 5%). In the second, we grouped
feature distributions into equivalence classes based on



estimates of prob(A>B) for pairs of distributions. Features
within equivalence classes were ranked based on vari-
ance. We evaluated these ranking schemes on randomly
drawn subsets of movies and compared their rankings to
the ranking on the full data set. We also conducted exten-
sive simulations. Neither scheme significantly improved
feature rankings. This issue of comparing distributions
with unequal variance is a longstanding problem in statis-
tics, and we are continuing to explore alternatives for im-
proving feature selection.

A

B

C

Figure 6: Example score distributions

Conclusions
Based on our work to date, substantial bias is likely to
afflict relational learning algorithms that engage in feature
selection in data sets with high linkage and autocorrela-
tion. Some learning tasks avoid these conditions, either
because the data consist of disconnected subgraphs (e.g.,
molecules) or because the data otherwise lack high link-
age or autocorrelation. However, we have discovered high
linkage and autocorrelation in data sets drawn from many
domains, including web page analysis, fraud detection,
and citation analysis. General-purpose algorithms for re-
lational learning will need to address this source of bias.
We attribute the poor performance of our alternative
ranking schemes to the fact that, given only the data, the
individual score of a given feature remains the best esti-
mate of its utility. Bootstrap resampling appears to pro-
vides accurate approximations to score distributions, but
those distributions only indicate that the true score could
be substantially lower or higher than the estimated score,
with roughly equal probability. We suspect that future
research to avoid feature selection bias will have to con-
sider additional information, such as prior estimates of the
true score. Given such information, priors on the true
scores would receive different updates for the same set of
data, because of the differing effective sample sizes for
each feature. This may provide a better route to using the
distribution information than our experiments to date.
Regardless of the shape of the eventual solution, the bias
associated with linkage and autocorrelation indicates the
importance of maintaining relational data representations,
rather than propositionalizing data. Maintaining a rela-
tional data representation makes it possible to assess the
statistical effects of linkage and autocorrelation, and to
adjust for the resulting bias. In addition, as noted in sec-
tion 2.2, maintaining relational representations allows

inference procedures to exploit relational autocorrelation
to improve the predictive accuracy of models.
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