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ABSTRACT 
Researchers in the social and behavioral sciences routinely rely on 
quasi-experimental designs to discover knowledge from large 
databases. Quasi-experimental designs (QEDs) exploit fortuitous 
circumstances in non-experimental data to identify situations 
(sometimes called “natural experiments”) that provide the 
equivalent of experimental control and randomization. QEDs 
allow researchers in domains as diverse as sociology, medicine, 
and marketing to draw reliable inferences about causal 
dependencies from non-experimental data. Unfortunately, 
identifying and exploiting QEDs has remained a painstaking 
manual activity, requiring researchers to scour available databases 
and apply substantial knowledge of statistics. However, recent 
advances in the expressiveness of databases, and increases in their 
size and complexity, provide the necessary conditions to 
automatically identify QEDs. In this paper, we describe the first 
system to discover knowledge by applying quasi-experimental 
designs that were identified automatically. We demonstrate that 
QEDs can be identified in a traditional database schema and that 
such identification requires only a small number of extensions to 
that schema, knowledge about quasi-experimental design encoded 
in first-order logic, and a theorem-proving engine. We describe 
several key innovations necessary to enable this system, including 
methods for automatically constructing appropriate experimental 
units and for creating aggregate variables on those units. We show 
that applying the resulting designs can identify important causal 
dependencies in real domains, and we provide examples from 
academic publishing, movie making and marketing, and peer-
production systems. Finally, we discuss the integration of QEDs 
with other approaches to causal discovery, including joint 
modeling and directed experimentation. 

Categories and Subject Descriptors 
H.2.8 [Database Applications]: Data Mining 

General Terms 
Algorithms, Design, Experimentation, Languages, Theory. 

Keywords 
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1. INTRODUCTION 
Quasi-experimental designs are a staple of research in the social 
and behavioral sciences, economics, and medicine. A quasi-
experimental design (QED) is an approach to data analysis that 
exploits fortuitous characteristics of the data that allow the 
equivalent of experimental control or randomization [4][5][19]. 
QEDs are sometimes called “natural experiments” because they 
emulate the conditions that allow investigators to infer causal 
dependencies from small amounts of data using laboratory 
experiments. 

QEDs can be a powerful tool for inferring causal knowledge, but 
applying these designs is a painstaking manual affair, requiring 
extensive knowledge of both the data and the conditions under 
which a QED can be applied. As a result, the opportunity to apply 
QEDs can be missed by investigators, even though such 
application requires no additional data collection. Investigators 
must cull through their data schema with great care to identify 
situations in which QEDs can be applied, and opportunities for 
causal inference using these designs can go unrecognized. 

In addition, the opportunities to apply QEDs in more general 
settings have increased dramatically in recent years [11]. First, the 
expanding complexity of databases is increasing the number of 
situations that match the conditions necessary to apply a QED. 
Second, the expanding size of databases is increasing the prob-
ability that the subsets of data used by QEDs will provide the 
necessary statistical power to identify subtle causal dependencies. 
Finally, the availability of new data and knowledge representa-
tions, particularly relational and temporal representations, and 
their associated inference methods, is making it possible to reason 
automatically about the preconditions for applying QEDs. 

In this paper, we report the first instance of a fundamentally new 
approach to knowledge discovery in databases. We describe and 
evaluate a proof-of-concept system that shows how QEDs can be 
identified automatically. We show that QEDs can be found using 
only a relational database schema, additional information about 
the temporal durations of specific events, and limited prior 
knowledge about potential causes. We report several 
representational innovations that facilitate automated discovery of 
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QEDs, including automatic construction of event streams and 
aggregated variables. Finally, we apply the approach to several 
data sets and discover non-trivial and useful causal dependencies 
based on the identified QEDs. 

1.1 Example 
Many of the ideas that led to this work are illustrated by recent 
studies published in the sociology literature. In late 2007, 
sociologists at The Ohio State University published a paper in the 
Journal of Youth and Adolescence [1]. The paper reported that 
early sexual activity among adolescents increases their risk of 
delinquency.1  The study not only concluded that the two types of 
behavior are statistically correlated, but that early sexual activity 
actually causes an increase in delinquency. Their findings 
indicated that, to reduce delinquency, public programs should 
focus, at least in part, on efforts to reduce early sexual activity. 

The study was based on a mostly manual analysis of a large and 
complex data set — the National Longitudinal Study of 
Adolescent Health — commonly known to researchers as “Add 
Health”. The data set resulted from a nationally representative 
study that explored health-related behaviors of more than 15,000 
adolescents in grades 7 through 12 and their outcomes in young 
adulthood [21]. The Add Health data allow researchers to examine 
how adolescents' experiences and social contexts (families, 
friends, peers, schools, neighborhoods, and communities) 
influence their health and risk behaviors. The data have been used 
in more than 1,000 published reports and journal articles. 

The Ohio State researchers were trying to do something very 
difficult: draw causal conclusions from non-experimental data. 
One primary challenge of such work is that, to conclude that a 
statistical association between two variables indicates causal 
dependence, the analysis must account for the effects of all 
common causes of the variables. To address this concern, the 
researchers attempted to control for potential common causes of 
both sexual activity and delinquency by modeling those effects 
and mathematically removing them, an approach often called 
“statistical control.”  The potential common causes they modeled 
included gender, race, parental education, receipt of public 
assistance, family structure, prior delinquency, depression, school 
grades, parental support, illegal substance use, relative physical 
development, dating experience, and virginity pledge status. 

Unfortunately, it appears that these controls were inadequate. 
Another study, completed by researchers at the University of 
Virginia at Charlottesville [8] and first released just a few months 
later, came to a very different conclusion. The study found that 
genetic and environmental differences between families explained 
the statistical association between early sexual experience and 
delinquency. Indeed, after controlling for these genetic and 
environmental causes, early sexual experience predicted slightly 
lower levels of delinquency in early adulthood rather than the 
higher levels that the Ohio State researchers had found. The 
findings suggest that some other factor, perhaps genetics, 
increases risk-taking behaviors, including both sexual activity and 
delinquency. The study was so convincing that the authors of the 

                                                                    
1 “Delinquency” refers generally to illegal acts by minors, 

including those applicable only to minors, such as truancy and 
alcohol use. In these studies, researchers assessed delinquency 
by scoring self-reported incidents of graffiti, property damage, 
shoplifting, other theft, and drug dealing. 

first study later agreed to this reinterpretation of their findings 
[22]. 

Why was the later study so convincing?  Rather than apply 
statistical controls, the second group of researchers applied a 
quasi-experimental design. Specifically, they identified 534 same-
sex twin pairs in the Add Health data. Twins share similar or 
identical genetics (depending on whether they are fraternal or 
identical twins) and similar fetal and early childhood 
environments. As a result, studying twins provides a way to 
control for genetic and environmental factors without the need to 
explicitly identify and model the effects of these factors. In the 
case of the Add Health data, focusing on twins allowed the 
Virginia team to control for additional factors that were not 
successfully measured or controlled in the initial study. 

This example points to one of the key insights about QEDs for 
knowledge discovery: analyzing only a subset of all available data 
can increase the validity of the resulting conclusions, provided 
that subset meets some highly specific conditions. Indeed, such 
subsets can provide evidence for stronger conclusions about 
causality than can an uninformed analysis of the entire data set. 

2. CAUSAL INFERENCE AND QEDS 
QEDs make it possible to discover causal knowledge from 
observational data. Here, causality means the assertion that 
dependence exists between A (the cause) and B (the effect) such 
that manipulation of the cause will result in the manipulation of 
the effect. Causation implies that varying A will make B vary. 

Causal knowledge differs substantially from the type of 
knowledge identified by most knowledge discovery algorithms, 
which captures only statistical associations. Classification trees, 
association rules, support vector machines, Bayesian classifiers, 
and nearly all other types of statistical models constructed by 
knowledge discovery algorithms make no commitments about 
causality. They only attempt to represent statistical associations. 
Knowing the value of A will help you predict the value of B, but 
changing the value of A may or may not affect the value of B. 

Causal knowledge has unique advantages over knowledge that 
identifies only statistical association. Causal knowledge is 
actionable in ways that statistical associations are not. A statistical 
association between two variables A and B could indicate that A 
causes B, that B causes A, or that some third variable C causes 
both A and B. If the goal is to affect the value of B, each of these 
situations implies different actions. For additional details, see a 
recent discussion with examples of causal knowledge discovery 
[11]. 

In addition, causal knowledge provides a more compact 
representation of knowledge about the associations among a set of 
variables. Rather than showing a complex pattern of statistical 
associations among a set of variables, causal models show a much 
smaller set of causal dependencies from which the larger set of 
statistical associations can be derived.  

2.1 Causal Inference 
Inferring causal dependencies from data is strictly more difficult 
than identifying statistical associations. Classically, the inference 
that A causes B relies on three conditions: 

• Association — The values of A and B are statistically 
associated.  



 

 

• Direction — The direction of causality is known (e.g., based 
on temporal criteria).  

• No common causes — The effects of all common causes of A 
and B have been eliminated.  

The challenge of eliminating common causes is particularly 
daunting, and different methods for causal inference approach this 
challenge in different ways. 

One approach is to employ a classical experiment in which 
researchers can explicitly affect the conditions under which data 
are gathered. In classical experiments, researchers use both 
control and randomization to eliminate the effects of potential 
common causes [7]. Control holds potential confounding variables 
constant so that they cannot affect the experimental outcome, and 
randomization assigns experimental subjects to treatments 
randomly so that potentially confounding variables cannot 
systematically affect outcomes. Randomization is particularly 
powerful, because it can eliminate or implicate entire classes of 
variables as potential common causes, even if an investigator has 
never defined or measured those variables. For example, an 
experimenter need not know which characteristics of an 
experimental subject (e.g., a medical patient) might be a common 
cause of A and B outside of the experimental context, as long as 
subjects are randomly assigned to groups receiving different 
treatments (values of A) within the experiment. The random 
assignment of A removes the potential for any variable to be a 
common cause of both A and B. 

However, investigators often wish to infer causality in situations 
that are not amenable to classical experiments, either for logistical 
or ethical reasons. An alternative to an experiment is to use 
observational (non-experimental) data and to identify, measure, 
and model potential common causes of A and B. With an accurate 
model, an investigator can mathematically remove the effects of 
common causes and then ascribe any unexplained association to 
the causal effect of A. This approach has been pioneered over the 
past several decades by researchers in several fields, including 
statistics [9][10][18], computer science [16], and philosophy [20]. 
Successfully applying this approach requires identifying and 
measuring all potential common causes, an assumption referred to 
as “causal sufficiency.”  The Ohio State team took one version of 
this approach in their study (although their analysis appears to 
have violated the causal sufficiency assumption). 
Another approach to analyzing observational data is to apply 
quasi-experimental designs. QEDs identify configurations of the 
data that provide the equivalent of control or randomization 
(sometimes called “pseudo-control” or “pseudo-randomization”). 
These designs were pioneered by sociologist Donald T. Campbell 
and his colleagues, beginning in the 1960s [4][5][19], and they 
have since been used in thousands of published papers in the 
social sciences, economics, and medicine. QEDs employ a variety 
of methods to emulate control and randomization. For example, 
one design (the non-equivalent control group design) attempts to 
identify two sets of data instances that have similar responses to 
temporal events but that differ in whether they experience a given 
treatment event. Another (the regression-discontinuity design) 
models the combined effect of both a discrete treatment and 
another variable that determines which units receive treatment. 
Other types of quasi-experimental designs that have been devised 
include the proxy pretest design, double pretest design, non-
equivalent dependent variables design, pattern matching design, 
and the regression point displacement design [5]. 

Nearly all QEDs can be thought of as exploiting the temporal or 
relational structure of the world to provide quasi-control or quasi-
randomization. For example, the twin design employed by Harden 
et al. exploits the fact that two different individuals share (are 
related to) a common genotype. As a result, systematically 
examining behavioral differences between twins can control for 
the vast array of genetic factors that could affect behavior. 
Similarly, the several QEDs exploit the fact that the characteristics 
of a single entity (say, a company) are likely to remain relatively 
stable over short time-periods. This fact facilitates the inference 
that an external event causes company behavior if that behavior 
changes substantially just after the event. 

2.2 Advantages and Disadvantages of QEDs 
QEDs have a number of advantages over statistical control or 
classical experiments. First, QEDs can surpass the validity of 
attempts at statistical control because they can control for entire 
classes of variables, even though those variables are not 
identified, measured, or modeled. Statistical control requires all 
three of these things, while some QEDs identify subsets of data 
for which the relational structure assures that entire classes of 
variables will be controlled. For example, the Virginia team was 
able to use a QED to factor out variables characterizing genetics 
and early family environment, even though they did not 
specifically identify, measure, or model any variables in these 
sets. Rather, they relied on the fact that twins had identical 
genetics and early family environment, regardless of which 
aspects of these factors might have influenced sexual activity or 
delinquency. 
Second, QEDs can surpass the validity of controlled randomized 
experiments because they apply to data collected “in place” rather 
than in an artificial laboratory setting. While laboratory 
experiments often allow exquisite levels of control and 
randomization, these advantages are often purchased at a high 
price by introducing artificiality into the study. Thus, while 
experiments have higher “internal validity” (they are internally 
consistent), they can sacrifice “external validity” (ability to 
generalize to the real world) [4]. Conclusions reached by QEDs 
typically have higher external validity than the corresponding 
experimental study, though they may sacrifice some degree of 
internal validity. 

Third, QEDs do not require the collection of additional data. 
Instead, investigators can apply them to an existing data set and 
draw strong causal conclusions. Indeed, as we show below, the 
identification of a QED does not require any data collection, only 
a specification of a data schema. This means that designs can be 
identified in advance and then used to guide data collection. 

Finally, QEDs do not preclude alternative methods for causal 
inference. Indeed, they can serve as a valuable adjunct to 
statistical control (by eliminating or identifying potential causal 
relationships) and to experiments (by limiting the number of 
potential dependencies that must be experimentally evaluated). 

That said, QEDs also suffer from several limitations. First, the 
designs are only applicable in a very limited number of situations. 
The increasing size and complexity of relational databases offer 
expanding opportunities for applying QEDs, but still only a small 
fraction of causal dependencies will be amenable to examination 
by these designs. 

Second, because many QEDs use only a subset of the data to infer 
causal dependencies, the validity of their conclusions relies on the 



 

 

representativeness of that subset. For example, twin studies rely 
on the assumption that twins do not differ substantially from non-
twins with respect to the characteristics under study. This 
assumption has been largely valid in the past, because twins 
occurred relatively randomly within the population of all births. 
However, in the past two decades, fraternal twins have become far 
more common due to the use of in vitro fertilization. These 
children tend to be born to older mothers, among other 
differences, and thus may differ systematically from non-IVF 
children. 

3. AUTOMATED DISCOVERY OF QEDS 
QEDs are widely used because of their advantages and despite 
their limitations. As one rough indicator, Google Scholar lists 
over 4,500 citations to each of two classic texts on the subject 
[4][5] and lists over 20,000 papers that use the terms “quasi-
experimental design” or “quasi-experiment”. However, these uses 
are entirely manual — investigators identify the potential to apply 
a QED based on their own knowledge of the data and of QEDs, 
and they do so without help from an automated system. We are 
unaware of any prior work on automated or semi-automated 
systems for identifying applicable QEDs based on information 
about a database. 

That said, the potential benefits of an automated system are large. 
First, such a system would allow automated checking of large and 
complex schemas for applicable QEDs. As the example in the 
introduction shows, it is easy for even experienced investigators to 
overlook important opportunities to apply QEDs. An automated 
system could alert researchers to applicable designs with 
relatively little work on their part. 

Second, an automated system would allow easy rechecking when 
changes occur to a database's schema or the knowledge of 
potential causal dependencies. When one study confirms or 
disproves a given causal dependence, it is not currently easy to 
assess the wider implications of this finding for the applicability 
of QEDs for other potential dependencies. An automated system 
could continuously evaluate the impact of new findings and 
alternative sets of assumptions made by an investigator on 
applicable QEDs. This, in turn, could significantly aid the process 
of collaboratively constructing knowledge bases (e.g., [17]). 

Finally, an automated system for identifying QEDs would allow 
these methods to be integrated with other automated methods for 
causal modeling [16][18][20]. These methods learn the structure 
and parameters of a joint probability model of a large collection of 
variables. While research on these methods continues, they face a 
large number of challenges both in terms of accuracy and 
computational complexity. These challenges could be partially 
addressed by applying QEDs whenever possible to identify key 
dependencies, reduce the size of the search space, and reduce the 
sample complexity of learning. This is particularly true as the 
complexity of models increases, as it has with the relatively recent 
advent of relational and temporal models. 

3.1 The AIQ Algorithm 
To evaluate whether automated discovery is possible and realistic, 
we have developed AIQ (for “Automated Identification of Quasi-
experiments,” pronounced “a-eye-que”), a system for reasoning 
about the applicability of QEDs to specific data sets. AIQ (v. 1.0) 
is implemented in SWI Prolog.2  Source code and Prolog-encoded 
                                                                    
2 http://www.swi-prolog.org 

inputs for several public databases are available from our 
website.3 

The algorithm takes as input a relational database schema 
augmented with information about the temporal extent of specific 
types of entities and relationships, along with information about 
the potential causes of specific variables on those entities and 
relationships. From this information, AIQ constructs several types 
of intermediate representations, including temporal streams of 
events, aggregated variables on those streams, and units that 
identify the data entities that will be used to test specific causal 
dependencies. There are a large number of combinations of these 
intermediate representations, and each combination applies to 
only a handful of potential QEDs. The algorithm checks which 
combinations of these intermediate representations correspond to 
valid QEDs, and outputs all such designs. The investigator can 
then evaluate the validity of each design and run appropriate 
statistical tests based on them. Alternatively, designs output by the 
algorithm may indicate flaws in the database schema or ancillary 
information, in which case the investigator can modify the 
database-specific information and iterate. 

3.2 Relational Database Schemas 
In section 4, we provide results of running AIQ on several data 
sets, for which we encoded their database schema and ancillary 
information in first-order logic. For convenience, we illustrate 
those schemas through augmented Entity-Relationship (ER) 
diagrams [6]. Specifically, we represent the ER diagram using a 
slightly modified Barker Notation [2] where entities are 
rectangular boxes and the relationship between two entities is a 
solid connecting line with the cardinality of the relationship 
represented as symbols on both ends of the connection. Entities 
can be related through one-to-one, one-to-many, or a many-to-
many cardinality. For example, given the two entities paper and 
conference and a relationship where a paper appears in one 
conference but a conference has many papers would be 
considered as many-to-one cardinality. In Barker Notation, open 
circles are used to identify zero, a vertical bar or dash is used to 
identify one, and a symbol where three lines intersect represents 
many. For simplicity, we do not use cardinality of zero, and 
cardinality of one is represented by an absence of a symbol. 
Many QEDs rely on knowledge about the existence of events and 
the temporal extent of entities. ER diagrams do not specify such 
temporal characteristics of data, so we must augment the schema 
with this information. Temporal extent identifies the average 
lifetime of an object and is used in causal modeling to identify if a 
stream associated with an entity can be a valid cause for some 
observed effect. Temporal frequency identifies how often one 
object changes in relation to another object. 

Our temporal ER diagrams identify the extent duration of entities 
by adding a time label inside of the entity box (see section 4.1). 
To introduce temporal frequency, we have extended the ER 
diagram to include a frequency label that annotates one-to-many 
relationship between entities. Where a many-to-many relationship 
exists, two directed temporal frequencies would be provided, one 
on either side of the many-to-many relation. For example a Store 
may have many Customers, and the temporal frequency from the 
Store to Customers would represent how often the Store receives a 
new Customer. In cases where the frequency is varied across 
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different objects of the same type, an average frequency is used to 
represent the set. For all temporal annotations in this paper, we 
measured frequencies in days. 

3.3 Potential Causes 
In addition to temporal annotations on entities and relations, 
individual variables in AIQ are annotated with information about 
their potential causes. By default, every other variable in the 
database is a potential cause, but prior knowledge of investigators 
and existing analysis approaches (e.g., joint modeling) can be 
used to prune the set of potential causes. In the most extreme case, 
an investigator might know that a variable has no causes; in the 
language of QEDs, this variable would be considered quasi-
random. For example, some government programs that provide 
services to individuals (e.g., job training) are allocated by lottery 
among all qualified applicants. Clearly, such situations represent 
highly useful knowledge for identifying potential QEDs. 

3.4 Streams and Aggregated Variables 
From the database schema and temporal annotations, AIQ 
automatically constructs streams that represent series of events 
occurring over a period of time with respect to a given static 
entity. For example, scientific researchers typically produce 
multiple papers at irregular intervals each year; from the 
perspective of the researcher, there exists a stream of papers over 
their entire career. AIQ automatically identifies potential streams 
based on the augmented database schema. Streams are defined as 
pairs of entities and an associated connecting path. Valid streams 
must match three conditions: (1) The two entities must be 
connected by a path of relationships; (2) The first entity must have 
a one-to-many relationship with the second entity; and (3) The 
first entity must have an extent longer than the average frequency 
along the stream. 

These conditions define the structure of a stream — a base entity, 
followed by a sequence of zero or more items on a relationship 
path, followed by an entity that is “dynamic” with respect to the 
base entity. It also gives rise to the algorithm in which streams can 
be recursively defined by enumerating all candidate paths. 
Additionally, in a particular direction, a “many” relationship will 
be propagated for the remainder of the path. For example, if item 
A is connected to B through a one-to-many relationship, and item 
B is connected to item C through a many-to-one relationship, then 
item A has a one-to-many relationship with item C. 

Given a stream, AIQ also constructs a set of variables on those 
streams that can be used in one or more designs. Stream variables 
include aggregations of variables on the dynamic entity, such as 
the average box office receipts of movies released by a given 
studio (the dynamic and base entities, respectively) or the sum of 
the page counts of articles published by a given author. Stream 
variables also include existence variables, which allow QEDs to 
identify causal influences on the occurrence of an entity. Any 
variable defined on an entity that becomes the dynamic entity of a 
stream can be aggregated into a stream variable. 

3.5 Identification of Units 
The notion of an experimental unit is crucial for developing 
effective quasi-experimental designs [19]. Essentially, a unit 
defines the boundaries for possible causes in an experiment. For 
example, in a clinical trial, a unit would be a person receiving a 
drug treatment. However, in the relational setting a unit can be 
any collection of related entities. We automatically define our 
units based on generated streams. The base item common to the 

two streams in a proposed design is the core of the unit, and the 
dynamic items, as well as the items on the paths in the streams, 
compose units in our QEDs. Additionally, a unit is defined with 
respect to a specific period of time, which is also automatically 
derived from the temporal frequencies provided through the 
schema description. 

3.6 Identification of Designs 
AIQ combines input information (the database schema and 
potential causes) with information it constructs (potential streams 
and units) to identify and evaluate potential QEDs. In version 1.0, 
we focus on a single class of QEDs — the non-equivalent control 
group design. This design combines relative simplicity, wide 
applicability, and intuitively understandable results. Future 
versions of AIQ will implement a much wider array of classes of 
QEDs.  

The non-equivalent control group design, also called the “non-
equivalent comparison group design,” is similar to one of the most 
widely used experimental designs (the “pretest-posttest control 
group design”). The experimental version of this design randomly 
assigns units to either a control group or a treatment group, 
measures a set of variables on all units (the pretest), then 
administers treatment to only the treatment group, and measures 
the variables again (the posttest). In the quasi-experimental 
version of the design, investigators cannot assign treatment 
randomly. Instead, in the non-equivalent control group design, 
treatments are assigned non-randomly and causal inferences are 
based on the relative rates of change of the two groups (e.g., the 
threats to validity might be judged low if the treatment group’s 
observed response increases sharply after treatment and the 
control group’s response remains unchanged) [19]. That said, AIQ 
currently also requires that all potential common causes be ruled 
out (a condition most frequently met by treatments being 
designated as quasi-random), to provide additional confidence that 
treatment and control groups are similar. 

AIQ identifies an instance of the non-equivalent control group 
design whenever: (1) two distinct stream variables — potential 
cause A and potential effect B — can be defined with respect to 
the same unit; (2) A and B have no common causes (e.g., A is 
quasi-random); and (3) the entities defining A and B match certain 
temporal constraints (e.g., causes occur less frequently than 
effects). Such cases correspond to the canonical non-equivalent 
control group design, in which a potential causal event happens 
rarely enough that measurements of effects can be made both 
before (pretest) and after (posttest) the potential causal event. 
When identified, instances of this QED are output for inspection 
and evaluation by the investigator. 

3.7 Hypothesis Tests 
The QED specifications identified by AIQ provide sufficient 
information that formulating a statistical test for causal 
dependence is fairly simple, given that data are readily available. 
In theory, the test could be done automatically by AIQ, but there 
were a sufficient number of implementation decisions that could 
crucially affect the validity of the hypothesis test that we chose to 
leave such tests outside the boundaries of automation (see section 
4.3 for an example). These include questions of sampling, test 
statistic, and aggregation method for stream variables. Instead, 
AIQ 1.0 identifies the QED in sufficient detail that statistical tests 
can be run fairly easily by the investigator. 



 

 

4. RESULTS 
To evaluate the utility of the AIQ algorithm, we applied it to three 
public databases that are widely used in the KD research 
community and that have reasonably complex relational schemas. 
While it is not a simple matter to objectively assess the 
performance of the algorithm, we report both subjective and 
quantitative results on these data sets. We provide several detailed 
examples, including one discovered causal dependence and one 
case of iterative refinement of the database schema to identify 
more interesting and useful QEDs. 

4.1 Data Sets 
HEP-Th — HEP-Th is a bibliographic database of papers from 
the ArXiv.org repository. Originally published as part of the 2003 
KDD Cup competition,4 the data set contains preprints from 1992 
until 2003, with over 30,000 papers, 13,000 authors, and 500,000 
links among them. Figure 1 shows the relationship between 
authors, their submissions and papers, journals, and citations. We 
have represented the submissions and specific author credits as 
separate entities in the data set. 

 
Figure 1: Entity-Relationship diagram with temporal fre-
quencies and extents for the HEP-Th database. Authors make 
submissions to ArXiv that may or may not become papers for 
a journal and papers can refer to other papers giving authors 
credits. We assume that authors make submissions to ArXiv 
about once a month, that it takes a submission about 3 years 
to undergo journal review and that the status of the paper 
while in review can change monthly. The remaining frequen-
cies are estimates used to reflect the dynamic nature of cita-
tions. We assume that authors and papers are a part of the 
repository for at least 20 years and that journals last even 
longer. 

IMDb/Netflix — The Internet Movie Database5 contains 
information on movies released worldwide, including release 
dates, directors, producers and actors, as well as the nominees and 
recipients of Academy Awards. We selected a subset of these 
awards covering films released in the years 1997 to 2007. We 
included information on the nominees and winners of Best 
Picture, Best Director, Best Actor, and Best Actress. We 
augmented the IMDb data with the Netflix Prize data set,6 which 
contains the title and year of release for 17,770 movies released 
on DVD and ratings of those movies from more than 400,000 

                                                                    
4 http://www.cs.cornell.edu/projects/kddcup/ 
5 http://www.imdb.com/ 
6 http://www.netflixprize.com/ 

customers. The date range for ratings is from November 11, 1999 
to December 31, 2005. The schema shown in figure 2 represents 
the combination of the two data sets. 

 
Figure 2: Entity-Relationship diagram with temporal 
frequencies and extents for the IMDb+Netflix database. Each 
movie has a series of actor and director stints as well as a 
review by a user of the Netflix Prize database. Awards are 
presented to actors, directors, and movies. We assume that 
movies, actors, and directors last as long as the database itself. 
Reviews can occur daily and award ceremonies occur once a 
year. Actors work on two films a year, directors make one 
movie per year, and once an actor or director works on a film, 
that information never changes. 

Wikipedia — Wikipedia7 is a collaborative peer-production 
system with the ultimate goal of providing free encyclopedia 
content to everyone. The database consists of millions of articles 
maintained by thousands of users. Anyone that registers can 
become a user and edit any page. Consequently, vandalism is 
inevitable, and occasional misinformation is provided. Thus, 
actions on users and pages frequently occur (e.g., users can have 
privileges revoked, pages can be restricted), and these events are 
stored in logging tables. The schema in Figure 3 presents the 
relationships among users editing articles, as well as the specific 
logging events that may take place. The main temporal 
assumption for this data set is that logging and editing events are 
frequent enough to assume they occur daily. 

 
Figure 3: Entity-Relationship diagram with temporal 
frequencies and extents for the Wikipedia database. This 
simple view shows how users can edit pages, and logs can be 
created to record the activity in the database. The assumption 
that editing and logging events can occur daily is reflected in 
the temporal frequency labels. We assume that users and 
pages last for the duration of the Wikipedia database. 

                                                                    
7 http://www.wikipedia.com/ 



 

 

4.2 Focusing on Plausible QEDs 
From a large number of possible designs, determined by the 
cardinality of entities, relations, and variables, AIQ identifies a 
relatively small number of plausible designs. To evaluate the 
degree to which the algorithm can focus the attention of 
investigators on plausible designs, we compared the total number 
of available designs to those selected by AIQ. Table 1 shows data 
on the total available QEDs, the total number actually identified, 
and the breakdown of those designs by base entity. The larger the 
number of possible QEDs, the greater the percentage reduction in 
the QEDs actually identified by AIQ as plausible. 

Table 1: Identified and Possible QEDs 

Database 
Name 

Base 
Entities 

Number 
QEDs 

Unique  
QEDs 

Available  
QEDs 

 
Percent 

Total 102 79 

Movie 30 13 

Director 30 27 
IMDb + 
Netflix 

Actor 42 39 

2028 3.9% 

Total 60 60 

Author 38 38 HEP-Th 
Original 

Paper 22 22 

560 10.7% 

Total 97 97 

Author 49 49 HEP-Th 
Extended 

Paper 48 48 

830 11.7% 

Total 44 44 

User 24 24 Wikipedia 

Page 20 20 

192 22.9% 

 

4.3 Identifying Useful QEDs 
The next reasonable question is the degree to which AIQ’s 
identified designs are actually useful for identifying previously 
unknown causal dependencies. We selected and evaluated several 
of the QEDs identified by the algorithm. The majority showed 
neither statistically significant associations nor sufficient 
statistical power to conclude independence between the variables. 
However, several were statistically significant. 

For example, one instance of a QED identified by AIQ on the 
IMDb/Netflix data involves the variables of award existence and 
an aggregate of user ratings on a base item of movies. This design 
implies, rather intuitively, that the granting of an Academy Award 
to a movie may cause changes in user ratings of that movie. This 
design was made possible because whether an award entity exists 
was designated as pseudo-random among all nominated movies 
(i.e., all nominated movies are equally likely to win an award). 
This is clearly an assumption, but a plausible one. 
We test this design by computing the average rating a movie 
receives in the two months prior to and the two months after 
Academy Awards are granted. For each movie, we computed the 
difference in the average ratings. Then we compared the mean 
difference for movies that won an award with the mean difference 
for those who were nominated but did not win.  

This general configuration of a hypothesis test is directly implied 
by the matching QED (the non-equivalent control group design), 
though the details still require prior knowledge of the movie 

domain not encoded within the domain-specific knowledge base. 
For example, we restrict the ratings to a window of two months 
since movies are not generally released on DVD until shortly 
before the Academy Award ceremony. Additionally, since the 
major nominations for the Academy Awards consist of best 
picture, best director, best actor, and best actress, we only 
consider these four categories as potential influences on user 
ratings. 

We perform a two-sample t-test on the differences in average 
ratings for these two populations of movies. The average rating 
decreases by 0.066 for movies that win an award compared to a 
drop of 0.247 for those that do not. This difference is weakly 
significant (p=0.07; N1=14, N2=47) indicating a causal 
relationship between winning an award and user ratings. The 
relative differences in the two populations could be due to a 
variety of underlying mechanisms, including anchoring (the 
Academy Award confers a high initial rating that raters are loath 
to change). Note that both populations see an overall decrease in 
average ratings, which could be due to regression toward the 
mean (early raters of movies tend to give higher ratings), 
unreasonably high expectations (award-winning movies are 
expected to very good), or seasonal effects. 

4.4 Interactive Refinement of Schemas 
The potential utility of AIQ goes beyond a simple one-shot 
analysis of an input schema. The algorithm can be used in an 
iterative manner to refine a schema to become more useful for 
causal discovery. 

For example, the initial HEP-Th schema consisted of entities for 
journals, authors, papers, citations, credits, and submissions and 
the relations between them (see figure 1). For this schema, AIQ 
generated a set of 60 possible QEDs. Many of the designs 
suggested that variables on submission caused variables on 
citation. While this might be plausible, another potential cause 
seemed more likely. 
We added an entity to the schema called publication status. These 
entities represent events in the life of a paper, including being in 
review, accepted, rejected, or published, and each status entity 
occurs at a specific point in time. The addition of the publication 
status entity increased the number of possible QEDs to 97. We 
again reviewed the set of designs, and several of them now 
indicated that changes in paper status could causally influence the 
existence of citations, an entirely plausible and interesting design. 

To evaluate this design, we selected a list of papers from HEP-Th 
that were published at least one year after they were first 
submitted. For each of these papers, we counted the number of 
citations the paper received during the first year it waited for 
publication and for the two years after publication. Then we 
selected the set of papers that were submitted but were not 
published. For each of these, we counted their number of citations 
during the three years after they were first submitted. 

We computed the difference in the means of the citation rate for 
the two time periods for each group of papers. For published 
papers, the difference in the means indicated that, in the period 
after publication, the paper's citation rate improved by 40%. For 
the unpublished papers, the difference also indicated an 
improvement in their citation rate, but only by 14%. We applied a 
two-sample t-test to analyze the difference between the two sub-
populations. The test indicated a highly significant difference 



 

 

between the citation rates of the published and unpublished papers 
(p=2.2e-16; N1=17394, N2=4559). 

However, is this strong evidence for a causal dependence between 
publication and citation rate?  Unfortunately not. Upon reflection, 
the augmented schema leaves out any measure of paper quality, a 
potential common cause of both publication and citation. Good 
papers are both more likely to be accepted for publication and 
more likely to be cited by other authors. On the one hand, this is 
precisely the type of situation that AIQ was designed to avoid; on 
the other hand, AIQ was unable to exclude such a QED because it 
lacked the information that would have allowed it to identify this 
possibility. The schema should be changed. While we have no 
data measuring this variable, we can include it in the schema and 
eliminate this QED from consideration. 

This example only contains two iterations of schema redesign, but 
it illustrates how, through many such iterations, an investigator 
could refine the schema to both expand and trim the list of QEDs.  

5. PRIOR WORK 
The most obvious body of prior work concerns the manual 
application of experimental and quasi-experimental designs 
[4][5][7][19]. This covers a long tradition of philosophical writing 
stretching back to the origins of modern science, as well as work 
on experimental design since the 1920s and formal quasi-
experimental design beginning with the work of Campbell and 
Stanley [4] and continuing to the present day [19]. We build on 
this work to produce algorithms to identify QEDs automatically. 

Work in cognitive psychology and artificial intelligence has 
investigated a related area — the processes by which scientific 
experiments are designed and analyzed. Heuristic search has been 
used in systems that are capable of rediscovering laws and 
inventing new ones in fields of science such as physics and 
chemistry [3][15]. For example, the KEKADA program has been 
used to model the process by which Hans Krebs developed and 
executed the experiments necessary to discover the urea cycle 
[14]. 

Similar advances have been exploited to automatically plan and 
conduct actual experiments. For example, researchers have 
recently automated the nearly the entire process needed to 
discover gene functions in yeast [13]. This “robot scientist” 
automatically generates hypotheses from the available data, 
designs and runs experiments, and analyzes the results. The 
algorithm's experiment selection has been shown to have 
equivalent or better performance than humans and vastly 
improves upon random selection of experiments. 

To our knowledge, however, no prior work exists on automatic 
identification of QEDs for the analysis of non-experimental data. 
With the increasing use of large-scale systems for data collection, 
the number and size of observational data sets is growing at 
unprecedented rates. These data sets provide a rich resource that 
should be automatically exploited to infer causal knowledge. AIQ 
offers a first step in that direction. 

A second large body of relevant research concerns causal 
discovery through joint modeling [9][10][16][20]. As mentioned 
in the introduction, this work differs substantially from the topic 
of this paper. It uses the entire data set to jointly model the 
probabilistic dependencies among all variables, rather than 
selecting subsets of data to control or randomize the effects of 
large classes of variables and thus allow individual dependencies 
to be tested with high statistical power.  

In addition, nearly all work on joint modeling for causal discovery 
assumes the data consist of independent and identically distributed 
(i.i.d.) instances. In contrast, our work (along with much of the 
work on manual identification of QEDs) assumes that data 
instances are joined by relations that represent temporal, genetic, 
organizational, or institutional linkages. These relations imply 
dependencies between variables on related entities, and they are 
essential background knowledge to identifying QEDs, whether 
manually or automatically. Little work on causal discovery 
exploits these relations (though a notable exception is Karimi & 
Hamilton [12], who use temporal information to identify causal 
sequences).  

That said, both work in QEDs and joint modeling use similar 
underlying notions of causality, control, randomization, and 
statistical inference. In addition, some of the more complex quasi-
experimental designs (e.g., the regression point displacement and 
regression discontinuity designs) rely on some degree of statistical 
modeling to achieve their effect. There is substantial scope to 
combine these methods in complementary ways, and perhaps even 
to unify them into a common framework for causal discovery.  

6. DISCUSSION AND FUTURE WORK  
The results and examples in this paper demonstrate the potential 
for automatic identification of quasi-experimental designs. For the 
first time, an automated program can identify QEDs within large 
and complex databases. AIQ 1.0 is only the first step toward a 
more complete and useful tool. While our implemented designs 
are not perfect, AIQ makes it possible to quickly see the 
implications of different assumptions, and to evaluate and 
improve those assumptions. The system provides a “what if” 
capability for investigators, and facilitates rapid improvement and 
exploration. 
Still, a wide variety of improvements remain. Future versions of 
AIQ should search for a much wider array of QED types and 
allow specification of unobserved entities and variables. More 
extensive changes would involve automated hypothesis testing of 
the potential causal dependencies and integrating QEDs with joint 
modeling algorithms that are currently used for causal discovery. 

Finally, a much more extensive evaluation is necessary, 
examining questions such as the breadth of application of QEDs, 
the proportion of all causal dependencies that are discoverable by 
QEDs, and the extent to which the use of QEDs facilitates joint 
modeling (and vice versa). 

7. ACKNOWLEDGMENTS 
This material is based on research sponsored by the Air Force 
Research Laboratory and the Intelligence Advanced Research 
Projects Activity (IARPA), under agreement number FA8750-07-
2-0158. The U.S. Government is authorized to reproduce and 
distribute reprints for Governmental purposes notwithstanding any 
copyright notation thereon. The views and conclusion contained 
herein are those of the authors and should not be interpreted as 
necessarily representing the official policies or endorsements, 
either expressed or implied, of the Air Force Research Laboratory 
and the Intelligence Advanced Research Projects Activity 
(IARPA), or the U.S. Government. 



 

 

8. REFERENCES 
[1] Armour, S. and Haynie, D. 2007. Adolescent sexual debut 

and later delinquency. Journal of Youth and Adolescence. 36, 
2, 141-152.  

[2] Barker, R. 1990. CASE*Method: Entity Relationship 
Modelling. Addison-Wesley, Boston, MA. 

[3] Bradshaw, G., Langley, P., and Simon, H. 1983. Studying 
scientific discovery by computer simulation. Science, 222, 
4627, 971-975. 

[4] Campbell, D. and Stanley, J. 1963. Experimental and Quasi-
Experimental Designs for Research. Rand McNally. 

[5] Cook, T. and Campbell, T. 1979. Quasi-Experimentation: 
Design & Analysis Issues for Field Settings. Rand McNally. 

[6] Chen, P. 1976. The entity-relationship model - Toward a 
unified view of data. ACM Transactions on Database 
Systems 1, 1, 9-36. 

[7] Cochran, W. and Cox, G. 1954. Experimental Designs. 
Wiley, New York. 

[8] Harden, K., Mendle, J., Hill, J., Turkheimer, E., and Emery, 
R. 2008. Rethinking timing of first sex and delinquency. 
Journal of Youth and Adolescence 37, 4, 373-385. 

[9] Holland, P. 1986. Statistics and causal inference. Journal of 
the American Statistical Association. 81, 396, 945-960. 

[10] Holland, P. and Rubin, D. 1988. Causal inference in 
retrospective studies. Evaluation Review 12, 203–231. 

[11] Jensen, D. 2008. Beyond prediction: Directions for 
probabilistic and relational learning. Lecture Notes in 
Computer Science 4894, 4-21. Springer, Berlin. 

[12] Karimi, K. and Hamilton, H. 2003. Distinguishing causal and 
acausal temporal relations. The Seventh Pacific-Asia 

Conference on Knowledge Discovery and Data Mining 
(PAKDD'2003). Seoul, South Korea, 234-240. 

[13] King, R., Whelan, K., Jones, F., Reiser, P., Bryant, C., 
Muggleton, S., Kell, D., and Oliver, S. 2004. Functional 
genomic hypothesis generation and experimentation by a 
robot scientist. Nature 427, 6971, 247-252. 

[14] Kulkarni, D. and Simon, H. 1988. The processes of scientific 
discovery: The strategy of experimentation. Cognitive 
Science 12, 139-176. 

[15] Langley, P. 1981. Data-driven discovery of physical laws. 
Cognitive Science 5, 1, 31-54 

[16] Pearl, J. 2000. Causality: Models, Reasoning, and Inference. 
Cambridge. 

[17] Richardson, M. and Domingos, P. 2003. Building large 
knowledge bases by mass collaboration. Proceedings of the 
2nd international conference on Knowledge capture. 129-
137. 

[18] Rubin, D. 1974. Estimating causal effects of treatments in 
randomized and nonrandomized studies. Journal of 
Educational Psychology. 66, 5, 689. 

[19] Shadish, W., Cook, T., and Campbell, D. 2002. Experimental 
and Quasi-Experimental Designs for Generalized Causal 
Inference. Houghton Mifflin, Boston, MA. 

[20] Spirtes, P., Glymour, C., and Scheines, R. 2000. Causation, 
Prediction, and Search. MIT Press, Cambridge.  

[21] UNC Carolina Population Center. 2008. Add Health Home 
Page. http://www.cpc.unc.edu/addhealth. Accessed on 
February 27, 2008. 

[22] Weiss, R. 2007. Study debunks theory on teen sex, 
delinquency. Washington Post. November 11, 2007, A03.

 


