
MaxProp: Routing for Vehicle-Based
Disruption-Tolerant Networks

John Burgess Brian Gallagher David Jensen Brian Neil Levine
Dept. of Computer Science, Univ. of Massachusetts, Amherst, USA 01003

{jburgess, bgallag, jensen, brian}@cs.umass.edu

Abstract— Disruption-tolerant networks (DTNs) attempt to
route network messages via intermittently connected nodes.
Routing in such environments is difficult because peers have
little information about the state of the partitioned network and
transfer opportunities between peers are of limited duration.
In this paper, we propose MaxProp, a protocol for effective
routing of DTN messages. MaxProp is based on prioritizing
both the schedule of packets transmitted to other peers and
the schedule of packets to be dropped. These priorities are
based on the path likelihoods to peers according to historical
data and also on several complementary mechanisms, including
acknowledgments, a head-start for new packets, and lists of
previous intermediaries. Our evaluations show that MaxProp
performs better than protocols that have access to an oracle that
knows the schedule of meetings between peers. Our evaluations
are based on 60 days of traces from a real DTN network we
have deployed on 30 buses. Our network, called UMassDieselNet,
serves a large geographic area between five colleges. We also
evaluate MaxProp on simulated topologies and show it performs
well in a wide variety of DTN environments.

I. INTRODUCTION

Disruption tolerant networks (DTNs) allow for routing in
networks where contemporaneous end-to-end paths are unsta-
ble or unlikely. Unstable paths can be the result of several chal-
lenges at the link layer, for example: high node mobility, low
node density, and short radio range; intermittent power from
energy management schemes; environmental interference and
obstruction; and denial-of-service attacks. Such environments
can exist in undeveloped areas or when a stable infrastructure
is destroyed by natural disaster or military efforts. DTNs are
useful when the information being routed retains its value
longer than the disrupted connectivity delays delivery.

DTNs can be based on moving nodes such as vehicles or
pedestrians. Vehicles can provide substantial electrical supplies
and transport bulky hardware, which may be inappropriate for
use by non-mechanized peers. The disadvantage of a vehicle-
based network is that the nodes move more quickly, reducing
the amount of time they are in radio range of one another.
Accordingly, one limited resource in a vehicle-based DTN
is the duration of time that nodes are able to transfer data

This research was supported in part by DARPA contract C-36-B82-S1
and in part by National Science Foundation awards CNS-0519881 and EIA-
0080199. The contents of our work are solely the responsibility of the authors
and do not necessarily represent the official views of the sponsors. This work
has been approved by DARPA for public release; distribution is unlimited.

between one another as they pass. Storage can be a limited
resource as well.

We offer several contributions in this paper using our de-
ployed DTN as well as simulation environments. First, we pro-
pose a DTN routing protocol, called MaxProp, that performs
significantly better than previous approaches. Our protocol
addresses scenarios in which either transfer duration or storage
is a limited resource in the network. MaxProp extends our
previous routing work [1] to address several problems that
we have observed in our real network topology. Existing
approaches have a bias towards short-distance destinations,
which MaxProp addresses by using hop counts in packets as
a measure of network resource fairness. Additionally, existing
approaches fail to remove stale data from network buffers.
MaxProp uses acknowledgments that are propagated network-
wide, and not just to the source. Finally, MaxProp stores a list
of previous intermediaries to prevent data from propagating
twice to the same node. While these ideas are simple, our
experiments show they significantly raise the delivery rate and
lower latency in a wide variety of scenarios as compared to
previous approaches.

Our experiments are based on the real mobility and real
transfers of the bus-based DTN testbed that we have built,
called UMassDieselNet. Our network operates daily from the
UMass Amherst campus and covers the surrounding county.
UMassDieselNet is composed of 30 buses that each contain
an HaCom Open Brick computer (P6-compatible 577Mhz
CPU, 256MB RAM) powered by the bus’s 24V supply. An
802.11b Access Point (AP) is attached to each Brick to provide
DHCP access to passengers and passersby. A second USB-
based 802.11b interface constantly scans the surrounding area
for DHCP offers and other buses. Each bus also has a GPS
device attached to the brick. Each brick runs Linux on a 40GB
notebook hard drive.

Additionally, we have constructed a simulator that produces
simple trace-based synthetic models, which allows us to ex-
trapolate our results. Finally, we have evaluated our protocol
with a third synthetic mobility model to ensure comparison in
a variety of environments.

This paper is organized around those contributions. In
Section II we summarize related work. In Section III we define
our protocol. In Section IV we describe our deployed DTN.
In Section V we describe the network traces and models that
we use in our evaluations, which are presented in Section VI.
We conclude in Section VII.

II. BACKGROUND

Previous work on DTNs has been based on various assump-
tions regarding connectivity and the availability of environ-
mental knowledge and control.

A number of the proposed routing algorithms for DTNs
make few assumptions and are therefore widely applicable. In
general, these algorithms are based solely on deciding which
messages to forward during a meeting with a given peer and
which messages to drop when buffers reach capacity. One
epidemic routing algorithm manages finite buffers as first-
in-first-out (FIFO) queues [13]. Our Drop Least Encountered
(DLE) algorithm [2] proposed dropping messages with the
lowest likelihood of delivery, and other papers have followed
on this idea [1], [3], [9], [12]. All of these algorithms ap-
proximate delivery probability as the likelihood of a delivery
path existing. Others have taken a more proactive approach
to routing in DTNs, made possible by stronger assumptions
such as knowledge of geographic location, prior knowledge
of connectivity patterns, and control over peer movement [1],
[3], [4], [8], [12], [16], [17], [18], [19], [10], [15].

A few similar deployments have been created for DTN re-
search. Many projects have been focused on bringing Internet
connectivity to developing and rural communities. DakNet
in Calcutta [11] and the Wizzy Digital Courier in South
Africa [14] are two examples. Zebranet [5] provided sensor
collection and routing for a herd of zebras and is perhaps the
closest work to ours.

III. THE MAXPROP PROTOCOL

In this section, we present our assumptions, and we detail
the protocol itself. There are many environments in which a
DTN can operate: on vehicles, pedestrians, zebras, or under-
water sensors. The assumptions we make are based on our
existing DTN network (see Section IV) composed of buses
and desktop computing hardware.

A. Model

We assume that each peer has an effectively unlimited buffer
for messages that they originate, but a fixed-size buffer for
carrying messages originated by others. We assume that trans-
fer opportunities are limited both in duration and bandwidth.
We assume peers have no a priori knowledge of network
connectivity, no control over their movement, no knowledge
of geographic location, and there are no always-on stationary
peers in the environment.

In a real network, DTN operations proceeds roughly in three
stages.

1) Neighbor Discovery. Peers must discover one another
before a transfer opportunity can begin; they do not
know when the next opportunity will begin.

2) Data Transfer. When two peers meet, the amount of
data they can transfer is limited. Peers do not know the
duration of each opportunity.

3) Storage management. As packets are received from a
neighbor, each peer must manage its finite local buffer
space by selecting packets to delete according to some

pkts with hop counts < thresh:
sorted by hop count.

pkt with hop counts >= thresh:
sorted by delivery likelihood

Buffer Storage
Packets

deleted first
from here

Packets
transmitted first
from here

high rank low rank

Fig. 1. The MaxProp routing strategy.

algorithm. Messages that are destined for a receiving
peer are passed up to the application layer and removed
from the buffer.

Each peer carries all messages until the next meeting occurs.
A peer will continue to forward a message to any number
of other peers until its copy of the message times out, it is
notified of delivery by an ack, or the message is dropped due
to a full buffer.

Bandwidth can be a limited resource when the transfer
opportunities are of short duration (which may be the result
of a slow neighbor discovery protocol) or when the radio used
has low bandwidth. Storage can be limited when such devices
as motes, PDAs, or cell phone are used. Offered message load
can affect both storage and bytes transfered.

B. Protocol Definition

The MaxProp protocol uses several mechanisms in concert
to increase the delivery rate and lower latency of delivered
packets.

MaxProp uses several mechanisms to define the order in
which packets are transmitted and deleted. Figure 1 illustrates
these mechanisms. At the core of the MaxProp protocol is
a ranked list of the peer’s stored packets based on a cost
assigned to each destination. The cost is an estimate of delivery
likelihood. In addition, MaxProp uses acknowledgments sent
to all peers to notify them of packet deliveries. MaxProp
assigns a higher priority to new packets, and it also attempts to
prevent reception of the same packet twice. The remainder of
this section presents the details of destination cost estimation,
our other mechanisms, and buffer management.

1) Estimating Delivery Likelihood: Previous work has
demonstrated that optimal delivery paths in a DTN can be dis-
covered by constructing a directed graph of nodes connected
by edges representing traversals through time and space [4].
A variation of Dijkstra’s algorithm can determine the shortest
path, if one exists. In practice, no oracle is available to reveal
future connections. MaxProp therefore assigns link weights as
follows.

Let the set of nodes in the network be s. Each node, i ∈ s,
keeps track of a probability of meeting peer j ∈ s. We estimate
this probability f i

j as the likelihood that the identity of the node
we connect to next will be j. For all nodes, f i

j is initially set
to 1/(|s|−1). When node j is encountered, the value of f i

j is
incremented by 1, and then all values of f are re-normalized.
Using this method, often called incremental averaging, nodes
that are seen infrequently obtain lower values over time. In

D

A

C
B

.6 .4

B C

.25 .5

A C D

.25

.5 .5

B C

.2 .6

A B D

.2

ABD = (1 - .5) + (1 - .25) = 1.25

ABCD = (1 - .5) + (1 - .5) + (1 - .2) = 1.8

ACD = (1 - .5) + (1 - .2) = 1.3

ACBD = (1 - .5) + (1 - .6) + (1 - .25) = 1.65

Path Costs:

Fig. 2. MaxProp Path Cost Calculation

MaxProp, each time two peers meet, they exchange these
values with one another.

For example, for a DTN with four other nodes, a peer j
has values for f i

1 = f i
2 = f i

3 = f i
4 = 0.25. Upon encountering

node 3, the peer sets f i
3 = 1.25 and re-normalizes all values

so that they sum to 1 again: f i
1 = f i

2 = f i
4 = 0.125 and

f i
3 = 0.625.

With other nodes’ values in hand, a local node calculates a
cost, c(i, i+1, . . . , d), for each path possible to the destination
d, up to n hops long. The cost for a path using nodes i, i +
1, . . . , d is the sum of the probabilities that each connection on
the path does not occur, estimated as one minus the probability
that each link does occur:

c(i, i + 1, . . . , d) =
d−1∑
x=i

[1− (fx
x+1)].

The cost for a destination is the lowest path cost among all
possible paths. Figure 2 illustrates an example of this policy
where the cost from A to D is determined as the minimum
value, 1.25.

In practice, this calculation among all possible paths is fast
because paths monotonically increase in cost during a depth-
first search. Once the cost for a path is worse than the current
best path, the search can stop. In our evaluations, we set the
maximum path length to search as 10.

Packets that are ranked with highest priority are the first to
be transmitted during a transfer opportunity. Packets ranked
with lowest priority are the first to be deleted to make room
for an incoming packet. When two packets have destinations
with the same cost, the tie broken by giving the packet that
has traveled fewer hops higher priority.

2) Complementary Mechanisms: Unlike other protocols,
MaxProp involves several other mechanisms beyond this core

that increase the delivery rate and reduce latency, as our
evaluations show in Section VI.

When two peers discover each other, MaxProp exchanges
packets in a specific priority order.

• First, all messages destined to the neighbor peer are
transferred.
• Second, routing information is passed between peers;

specifically, a vector listing estimations of the probability
of meeting every other node, as explained above.
• Third, acknowledgments of delivered data are transfered,

regardless of source and destination. An acknowledgment
consists of the cryptographic hash of the content, source,
and destination of each message, and is therefore about
128 bits. This mechanism serves to clear out buffers in the
network of old data at little cost if the acknowledgment
are small compared to data packets. In our evaluations,
peers do not spend more than 1% of the historical average
connection duration on sending acknowledgments.
• Fourth, packets that have not traversed far in the network

are given priority. We found in simulations that estimating
delivery likelihood can favor packets that have a high
chance of reaching a destination, causing some packets
to never get a chance at being propagated. Therefore,
MaxProp attempts to give new packets a head start in the
network by placing them at a higher priority. The effect
of this approach is that newer packets are transmitted at
several transfer opportunities when they are first gener-
ated, increasing their chance of reaching the destination.
To implement this strategy, MaxProp logically splits the
buffer in two according to whether the packets have a
hop count less than a threshold t hops. Packets below
the threshold are sorted by hopcount; packets above are
sorted by the scoring mechanism described above.
Setting the threshold statically would be arbitrary and
would not work for all environments. MaxProp takes an
adaptive approach to setting the threshold.
In environments where the average number of bytes
transfered per transfer opportunity, x, is much smaller
than the byte size of buffer, b, we prioritize low-hopcount
packets. As x grows, we slowly reduce the threshold
to the difference between the two values. When x is
larger than the buffer size, then we remove the threshold
completely — it is no longer needed.
Specifically, after each transfer opportunity, we re-
evaluate the threshold by first choosing a portion of the
buffer p as follows:
• If x < b/2, then p = x
• If b/2 ≤ x < b then p = min(x, b− x)
• If b < x then p = 0.

If we use p as a threshold, we would be arbitrarily
partitioning packets of the same hop count; therefore
we set t to be the minimum hop count that selects
packets included in p (and perhaps more). We evaluate
this algorithm in Section VI.
• Fifth, the remaining, untransmitted packets are sent in

an order based on the scores described in Section III-B.1.
• Finally, we note that in all cases, packets that have

already been sent to the node are not sent again. A
hop list in each packet stores peers that the packet has
already traversed, including peers to which the current
node has sent the packet. (A similar algorithm is used in
Usenet/NNTP to limit flooding [6].)

MaxProp keeps copies of packets that it has passed on to
other peers. In environments where intermediaries are fully
reliable and all routes are known — such as the interplane-
tary transmissions handled by DTNRG for NASA — this is
wasteful. But for UMassDieselNet, and similar DTNs, this is
a strategy we find effective in our evaluations.

3) Managing Buffers: The difference between managing
limited storage and limited transmission is that packets that
are sent in one transfer opportunity may be sent in the next
opportunity. In contrast, if a packet is dropped from a buffer,
it may never be delivered.

There are only three reasons a peer p can drop a packet,
m, without reducing the overall delivery rate of the network
unnecessarily.
• Criteria 1: A copy of message m has already been

delivered to its destination.
• Criteria 2: No route with sufficient bandwidth will exist

between p and m’s destination during the lifetime of
message m.

• Criteria 3: No copy of m has been delivered, but some
copy of m will be delivered even if peer p drops its copy.

It is easy to show that these three criteria are necessary and
sufficient. First, the three criteria are mutually exclusive; it is
not possible for any message to meet more than one of them.
Second, the only possibility not covered is that m has not been
delivered but can only be delivered if p holds on to m. Clearly,
dropping this type of message will affect the overall delivery
rate.

Since the propagation of information in a DTN is relatively
slow, a peer will generally not know the values of the three
criteria with certainty.

To estimate whether Criteria 1 has been satisfied, we use
acknowledgments sent from the destination and propagated to
all peers in the network. Although this information can be
delayed, it will never be inaccurate once received.

To estimate Criteria 2, we use the scoring mechanism from
Section III-B.1.

Criteria 3 is the most difficult to estimate. As a weak
estimator, we use hop count. Because packets are copied from
one peer to another (without being deleted from the first),
packets that have propagated further within the network are
given lower priority for routing and are dropped first. These
packets are most likely to have already been delivered; as we
show in Section VI, this is a good approach.

In sum, MaxProp deletes acknowledged packets immedi-
ately, followed by packets that have reached the threshold of
t hops with poor scores assigned to the packet’s destination,
followed by packets with the most hops below threshold t.

20 1 mi

Fig. 3. Routes traveled by the UMassDieselNet buses. The black rectangle
shows the area covered by the photo in Fig. 5.

IV. UMASSDIESELNET

The end goal of any systems project is a deployed im-
plementation. Simulations and analysis can predict trends of
performance, but real systems expose problems that may not
be obvious on paper. For example, models of node move-
ment and connectivity are only approximations of what can
happen in real life systems. This is critical as the movement
and communication patterns of peers is likely to affect the
relative performance of protocols. In fact, mobility research to
date has been criticized for having too many oversimplifying
assumptions [7].

We have constructed a DTN testbed composed of 30 buses
operated by the UMass Amherst branch of the Pioneer Valley
Transport Authority (PVTA) that we have fitted with a custom
package of off-the-shelf hardware. This testbed is called
UMassDieselNet. The transit buses service an area sparsely
covering approximately 150 square miles. Figure 3 shows the
exact geographical coverage of the buses. All routes intersect
in Amherst, Massachusetts; Fig. 5 shows the density of bus-
to-bus connection opportunities during a one month period in
that geographic area.

In this section, we describe our setup and present the
characteristics of our testbed from which we took traces to
evaluate our protocol and also to construct a synthetic trace
generator.

A. Current Backbone Testbed

The testbed began operating in May 2004 with five buses.
Each bus carries a HaCom Open Brick computer (P6-
compatible 577Mhz CPU, 256MB RAM). An 802.11b Access
Point (AP) is attached to each brick to provide DHCP access
to passengers and passersby. A second USB-based 802.11b
interface constantly scans the surrounding area for DHCP
offers and other buses. Each bus also has a GPS device
attached to the brick. Each brick runs Linux on a 40GB

}

}
Brick ComputerAccess Point

GPS wire802.11 Dongle wire

Power Inverter

Back of
electronic
sign

Pull-
down
panel

Sign power wire

Fig. 4. Photos of a deployed bus peer.

Fig. 5. Each points represents one in-motion bus-to-bus transfer during March
23–April 23 overlaid on an aerial photo (roughly 4 sq. mi.). (Only viewable
in color.)

notebook hard drive. Figure 4 shows a photo of a system,
which are installed behind the electric sign.

To enable bus-to-bus transfers, the buses beacon on a single
channel once every 100ms. We programmed the bricks to
transfer the largest amount of data possible using TCP at
each transfer opportunity. The figures show the results from
our testing of bus-to-bus in-motion transfers, including the
PDFs of data transfered (Fig. 6), transfer opportunity duration
(Fig. 7), and inter-transfer opportunity time (Fig. 8), from
February 1 until May 10, 2005. The best fit to log-normal
are shown only for comparison in Figures 6 and 7. These
statistics are not simple because this is a real system that
operates according to many factors that affect bandwidth,

 32B 512B 8KB 128KB 2MB 32MB 512MB0

2

4

6

8

10

12

14

16

18

20

Bytes transfered (logarithmic bins)

Pe
rc

en
ta

ge

Observed Data
Log Normal fit

Fig. 6. PMF of bytes transfered at each transfer opportunity
(Feb 1–May 10, 2005). Avg: 1.2 MB.

10 100 1000 10000 100000 1e+060

5

10

15

20

25

30

35

Duration of transfer in ms (logarithmic bins)

Pe
rc

en
ta

ge

Observed Data
Log Normal fit

Fig. 7. PMF of transfer opportunity duration (Feb 1–May 10, 2005). Avg:
10,209 ms.

movement, density, and other characteristics. Because they are
based on a real system, they give us confidence in our trace-
drive evaluations, presented in the next sections.

To maintain and monitor our network, we use numerous
external APs that offer free service along the bus routes hosted
by third parties. We have installed only two APs — one
on campus and one at the bus garage. Whenever the buses
have web access, they retrieve software updates from a central
server. At that time a bus provides its current GPS location
and MAC address, and it uploads logs of its performance
during the day, including the throughput of bus-to-bus transfer
opportunities, APs contacted, a record of movement, and
application records.

V. NETWORK TRACES AND MODELS

Real networks change topologies, link latencies, and avail-
able bandwidth throughout the course of their usage. DTN
routing protocols must be adaptable enough to continue oper-
ating effectively under these evolving network conditions. Our

.5s 2s 8s 32s 2m 8m 34m 2h 9h
0

5

10

15

20

25

30

35

40

time between transfer opportunities (log scale)

P
er

ce
nt

ag
e

(P
M

F)
Observed data

Fig. 8. PMF of the time between transfer opportunities
(Feb 1–May 10, 2005). median: 11 sec.

main goal is to design an algorithm that works best with the
bus-based DTN we have deployed in Amherst. However, we
do endeavor to design the most general algorithm.

Accordingly, our protocol evaluations make use of the traces
as well as two synthetic topologies of intermittently connected
peers. The first is a program that simulates the movements and
transmissions of buses but allows us to increase the number
of buses appearing on each route. The second is completely
synthetic, based on a simple algorithm governing connections.
This section describes the properties of each of these three
models.

A. UMassDieselNet Traces

To allow us to easily test different routing algorithms in
a real DTN environment, we set the UMassDieselNet buses
to transmit random data to one another whenever they are
within range and record the time, transmission size, and buses
involved. Our testbed is subject to the real schedule of the
UMass campus — many fewer buses run on weekends and
holidays. To realize some uniformity, we used 60 traces from
weekdays between January 25, 2005 to May 6, 2005; we
excluded holidays and other occasions causing buses to run
infrequently.

On average, about 28 buses are active each day, and each
days lasts from about 7AM to 7PM. In all, the traces consist
of over 720 hours of recorded data for each of the 30 buses
(about 20,000 bus-hours total). Each data point of our graphs
in the next section represents a single protocol evaluated using
this amount of trace data three times, each with a different seed
for randomly generated packets.

The route each bus is placed on each day is chosen by
the garage dispatcher and can change during the day. Unlike
synthetic simulations, buses can leave the network at any time.
We did not try to automatically determine the routes of buses,
though this is possible with some significant effort. We decided
against this approach after finding GPS data often inconsistent
or containing gaps where line-of-sight to satellites was lost.

In our simulations, we generated packets from each bus
between 2 and 18 packets per hour. Packets are destined for
other buses that are currently in the network, but there is never
a guarantee that the destination bus will remain for any period
of time — we treat such packets as failures. We varied buffer
storage available in each bus between 50 and 480,000 packets
of 10K each (i.e., 500K to 4.8G drives). Finally, we varied the
size of packets from 10K to 100K. For transmission bandwidth
at each opportunity, we used the real trace data.

B. Synthetic Bus Traces

Routing experiments usually require that certain operational
parameters remain constant as others are varied to reveal the
true causes of observed phenomena. The inconsistent operation
of UMassDieselNet nodes makes such experiments a challenge
because few parameters can be held constant from day to day.

To this end, we developed a simple trace generator using
GPS data to reconstruct the movement and timing patterns
of nine major bus routes around the university. Each route is
based on one representative trace day that had accurate GPS
data. This simulator allows us to have all buses operating
in a predictable fashion each simulation run while varying
such factors as radio range, transmission bandwidth, buses per
route, and schedule variance.

C. Virtual DTN Networks

UMassDieselNet effectively demonstrates routing perfor-
mance in one actual operational environment, however, be-
cause of UMassDieselNet’s topology and specific operational
environment, its routing performance may not be characteristic
of other DTNs.

We created a virtual DTN that models the connectivity
between peers according to a simple algorithm. In the model,
each peer p has a small set of preferred peers that it meets with
often and fairly regularly over the course of a simulation. Peer
p meets with the remaining set of peers infrequently or not at
all. These networks are intended to produce varied patterns
of linkage over different pairs of peers that remain relatively
consistent over time. The expectation is that this will give the
protocols a regular pattern to learn from.

We create these small-diameter networks as follows. Each
pair of peers in the network has a link connecting them. For
each link, we draw a meeting count, c, at random from an
exponential distribution with mean λ. For any links with c <
λ, we reset c = 0. This creates fewer direct meetings between
peers and reduces the number of one-hop deliveries in the
network. Let s represent the duration of the simulation. We
then calculate an inter-meeting time, i = s/c, for each link
independently. The actual times between meetings during the
simulation are drawn randomly from a Poisson distribution
with a mean of i.

To determine the bandwidth transfered between the peers in
this model, we selected a value from the bus traces uniformly
at random.

VI. EVALUATION

The primary goals of any DTN routing protocol is to
maximize the delivery rate of offered packets and to minimize
the latency between source and destination. We evaluated our
protocol in the context of other routing algorithms and in three
topological environments. We found in evaluations varying
offered load, buffer capacity, and individual packet size that
our protocol delivered more packets with lower latency than
other protocols.

A. Protocol Comparisons
We compared MaxProp against several other approaches:

an oracle-based Dijkstra algorithm [4], an expanded version
of our previous work called Drop-Least Encountered [1], [2],
and random routing as a baseline for performance. We detail
each algorithm below.

• Oracle-based Dijkstra [4]. This algorithm cannot be re-
produced in practice because of the use of an oracle; how-
ever, MaxProp was able to perform better in our trace-based
evaluations. The algorithm is an adapted version of Dijkstra’s
shortest-path algorithm that works with time and space. It
determines which packets are likely to route through a peer
with the lowest latency. The algorithm uses the exact times
of the future meetings with other peers to construct a directed
network graph.1 Vertices in the graph represent connection
events, and direct links between edges order the events. Links
are weighted with the delay before the event occurs. Peers
may buffer a packet until any future link event, giving the
graph a highest branching factor closest to the present node.
The standard Dijkstra algorithm then determines shortest delay
paths by traversing the graph.

This strategy algorithm still falls short of being globally
optimal because the oracle does not have knowledge of the
buffer space and link bandwidth allocations of all peers at
all times in the future. Effectively, each node makes rout-
ing decisions independently, without consideration of other
peers packets which will be traversing the links and buffers
simultaneously. With this schedule coordinating information,
computational complexity for optimal route determination of
all packets becomes an NP-complete problem which can be
solved via a dynamic programming algorithm [4].

• Most Encountered/Drop Least Encountered This pro-
tocol consists of only the scoring mechanism described in
Section III-B.1 to order packets. Packets with the highest
scores have destinations that are Most Encountered are the
first to be transmitted, and packets with the lowest scores are
Dropped because they are Least Encountered — hence the
name ME/DLE. This protocol does not use complementary
mechanisms described in Section III, including acknowledg-
ments, hop lists, and higher priority for young packets. It can
therefore be used as a measure of how well our complementary
mechanisms perform. From another viewpoint, it is an exten-
sion of our previous work, the Drop Least Encountered [1],

1Not surprisingly, using the planned bus schedule instead of exact times
performs considerably worse than the oracle; those results are not shown here.

[2] protocol to include a mechanism for scheduling packets at
transfer opportunities. It therefore shows how well our newest
protocol performs in comparison.
Random. This protocol chooses messages uniformly at ran-
dom to be transmitted or discarded as necessary at each
connection event.

B. Experiments

Our simulations produced three sets of results using the
traces of the buses for determining when transfer opportunities
occur and for how much bandwidth is transfered at each.

First, we analyzed three specific scenarios:
1) Delivery rate and latency when offered load varies from

2 to 18 pkts/hour on each bus (with fixed buffer size
and packet size). These values represent the means of
exponentially distributed packet loads.

2) Delivery rate and latency when buffer size varies from
500KB to 5MB on each bus (with fixed offered load and
packet size).

3) Delivery rate and latency when packet size increases
from 10KB to 100KB (with fixed buffer size and offered
load).

Then using synthetic traces, we analyzed how the protocols
performed when the the number of buses in the network varied,
and how the protocols performed with different radio ranges.

Finally, we analyze performance again using the virtual
DTN topology described in the previous section.

For all simulations, we calculated a paired t-test of MaxProp
against each other protocol. Since the packet load and buses
were the same in each simulation run, we paired each node
for comparisons. (Standard deviation is not appropriate since
each node achieves vastly different values depending on their
route in the simulation.) Our results, though not plotted, show
that the means and medians for MaxProp that are plotted in
our graphs are significantly different than the other protocols.

C. Results

Figures 9 and 10 show the delivery rate and median latency,
respectively, of each protocol as offered load in the system
increases from 2 pkts/hour to 18 pkts/hour. With this increase
in load, we can see a drop in delivery rate for all protocols.
However, for all scenarios, MaxProp delivers more packets and
maintains smallest latency. What is striking is that MaxProp
outperforms oracular Dijkstra even though the latter protocol
knows exactly when the next meeting takes place. Note in
these simulations the large 40GB buffer on the peers (the same
as the real buses) result in no dropping at the nodes due to
filled buffers.

Figures 11 and 12 show the delivery rate and median
latency, respectively, of each protocol for storage resources
that are much less than what we have on the buses. In these
experiments, we allows peers to carry between 50 and about
500 packets, which is 500KB to 5MB for the 10k-sized packets
we used. MaxProp shows its versatility in these experiments as
it maintains its performance advantage over oracular Dijkstra
after a buffer size of just 1MB, and always performs better

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

D
el

iv
er

y
R

at
e

(%
)

Packets sent per hour (each node)

MaxProp
Dijkstra (w/ meeting Oracle)

ME/DLE
Random

Fig. 9. Delivery rate.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10 12 14 16 18

M
ed

ia
n

La
te

nc
y

(m
in

ut
es

)

Packets sent per hour (each node)

MaxProp
Dijkstra (w/ meeting Oracle)

ME/DLE
Random

Fig. 10. Median latency of delivered packets.
Performance when offered load varies. (10k packets,
40GB Buffer; real buses bandwidth and mobility.)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

D
el

iv
er

y
R

at
e

(%
)

Buffer size at each node (in packets)

MaxProp
Dijkstra (w/ meeting Oracle)

ME/DLE
Random

Fig. 11. Delivery rate.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300 350 400 450 500

M
ed

ia
n

La
te

nc
y

(m
in

ut
es

)

Buffer size at each node (in packets)

MaxProp
Dijkstra (w/ meeting Oracle)

ME/DLE
Random

Fig. 12. Median latency of delivered packets.
Performance for small storage sizes. (18pkts/h, 10k
packets, real bus bandwidth and mobility.)

than random and ME/DLE. Recall the ME/DLE is equivalent
to MaxProp without the complementary mechanisms described
in Section III-B.2 — this experiment demonstrates their effec-
tiveness. Again we see that latency of MaxProp is either best
or second to ME/DLE; however, the latter protocol delivers a
significantly smaller percentage of packets.

Noticeably, ME/DLE performs better than random only for
small buffers. In our previous work on the DLE protocol [2],
[1] we evaluated only buffer sizes below 50 packets (with
infinite bandwidth at each transfer opportunity). However,
these experiments show that performance of such an algorithm
is poor for more resourceful peers.

In our evaluations we found that Dijkstra and ME/DLE
overly favor certain links, causing congestion in the network.
Random is able to perform better because it does not send all
data over a small number of links. MaxProp is also able to
take advantage of a wider set of opportunities in the network
by favoring new packets, sending them along links that other
protocols would not use. Additionally, MaxProp’s use of acks
and hoplists also makes better use of buffers and transfer

opportunities.
Figures 13 and 14 show the delivery rate and median

latency, respectively, of each protocol as the size of the
packets increases from 10KB to about 100KB. Increasing
packet size models different applications (e.g., small email
messages versus large document and image transfers). Larger
packets make it difficult for peers to make use of all transfer
opportunities, some of which are too short in duration. Here
again we see that MaxProp is able to perform better than other
protocols.

D. Evaluations of MaxProp Components

There are several components to the MaxProp protocol.
Figure 15 separates the performance of each. As above,
Random denotes a strategy where packets are transmitted and
deleted in a random order. Random with Hoplists adds only the
mechanism to thwart duplicate reception of the same packet
by a peer. Random with Acks adds only the acknowledgments
to random, allowing deletion of delivered packets. ME/DLE
is equivalent to the scoring mechanism of MaxProp. Finally,

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

D
el

iv
er

y
R

at
e

(%
)

Packet size (KB)

MaxProp
Dijkstra (w/ meeting Oracle)

ME/DLE
Random

Fig. 13. Delivery rate.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90 100

M
ed

ia
n

La
te

nc
y

(m
in

ut
es

)

Packet size (KB)

MaxProp
Dijkstra (w/ meeting Oracle)

ME/DLE
Random

Fig. 14. Median latency of delivered packets.
Performance as packets increase in size. (18pkts/h, 40GB
buffer, real bus bandwidth and mobility.)

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

D
el

iv
er

y
R

at
e

(%
)

Buffer size at each node (in packets)

MaxProp
ME/DLE

Hopcount
Random with Hoplists

Random with ACKs
Random

Fig. 15. The components of MaxProp evaluated separately.

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14 16

%
 o

f P
ac

ke
ts

 A
lre

ad
y

D
el

iv
er

ed

Visited Nodes

Packets in Network

Fig. 16. Observed packets delivery status and hop counts.

Hopcount sorts the buffer by distance traveled for prioritizing
transmission and deletion. Packets with the same count are
chosen randomly. The figure shows a simulation where 10KB-
size packets are used with mean load of 18pkts/hour on each
bus. MaxProp performs best across a range of buffer sizes
since these mechanisms are complementary.

We were also interested in the quality of hop count as
estimator of whether a packet has been delivered by another
node, as we postulated in Section III-B.3. Figure 16 shows the
hop counts of packets at each node sampled at each connection
event. The percentage of packets which have already been
delivered are displayed on the y-axis. These results help
demonstrate that MaxProp is correctly exploiting hopcount
information to better prioritize packets that have likely not
yet been delivered.

E. Examining Other Parameters

As we discussed above, using synthetic bus traces we
are able vary other network parameters. Figures 17 and 18
show the delivery rate and latency, respectively, of simulated

traces when the number of buses servicing each route varies.
We can observe from these figures that delivery probability
remains roughly constant after enough peers are introduced
for frequent connection events. This balance reflects increasing
load (produced by new peers) offset by increasing numbers of
peers to facilitate packet delivery. Latency sharply decreases
as available delivery paths increase. The relative performance
of the protocols is exactly that of Figures 11 and 12. Even
though the experiments are from multiple synthetic traces,
characteristics specific to our bus routes manifest themselves
in performance results; specifically, median latency jumps by
10% when each of the nine routes has five buses.

Another experiment we could not perform with the real
UMassDieselNet was varying radio transmission range. Fig-
ures 19 and 20 show the delivery rate and latency, respectively,
of simulated traces with varying radio transmission ranges. In
a very simple approach, we determined bandwidth multiplying
the length of time peers are in radio range by the mean transfer
rate reported in the bus data, which is 120 KB/s.

Increasing the peers’ radio range shows no gain in delivery

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

D
el

iv
er

y
R

at
e

(%
)

Busses Servicing Each Route (9 total)

MaxProp
Dijkstra

ME/DLE
Random

Fig. 17. Delivery rate.

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 1 2 3 4 5 6

M
ed

ia
n

La
te

nc
y

(m
in

ut
es

)

Busses Servicing Each Route (9 total)

MaxProp
Dijkstra

ME/DLE
Random

Fig. 18. Median latency of delivered packets.
Performance as buses servicing each route increases.
(18pkts/h, 40GB buffer, simulated bus bandwidth and mo-
bility.)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

D
el

iv
er

y
R

at
e

(%
)

Bus Radio Range (in feet)

MaxProp
Dijkstra

ME/DLE
Random

Fig. 19. Delivery rate.

 22

 24

 26

 28

 30

 32

 34

 36

 50 100 150 200 250 300 350 400

M
ed

ia
n

La
te

nc
y

(m
in

ut
es

)

Bus Radio Range (in feet)

MaxProp
Dijkstra

ME/DLE
Random

Fig. 20. Median latency of delivered packets.
Performance radio range of peers increase. (18pkts/h,
40GB buffer, simulated bus bandwidth and mobility.)

rate as buses have enough buffer available to store and forward
most packets they receive. Latency, on the other hand, steadily
decreases as buses are able to contact additional peers and
transfer additional data at each opportunity.

F. Virtual DTN Simulation
Figures 21 and 22 show the delivery rate and latency,

respectively, of a simulated trace of 30 peers using the virtual
DTN described in Section V-C. Each of 20 virtual topolo-
gies was simulated for 1,440 minutes through 3 simulations,
resulting in 1,400 hours simulated per data point. Dijkstra’s
foreknowledge of events in these unusual topologies give it an
edge over MaxProp as statistical prediction of peering events
works less reliably. Despite operation outside a vehicle-based
DTN, MaxProp still maintains good performance.

VII. CONCLUSION

We have proposed MaxProp as an effective protocol for
DTN routing, particularly for the context of our real DTN de-
ployment. MaxProp unifies the problem of scheduling packets

for transmission to other peers and determining which packets
should be deleted when buffers are low on space. Additionally,
we have identified several complementary mechanisms for
improving the performance of path-likelihood based routing,
including: system-wide acknowledgments, hoplists denoting
previous intermediate recipients, and priority for new packets
using an adaptive threshold.

Unlike many other previous works, our evaluations are
based on traces of the actual movements and TCP transfers
over 802.11 of a network of 30 buses. UMassDieselNet
operates everyday from our campus garage has provided us
with months of trace data.

Our evaluations show that MaxProp performs better than
even protocols that have access to an oracle that knows the
schedule of meetings between peers. Our evaluations also
examine MaxProp in simulated topologies to show it performs
well in a varied DTN environments.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

D
el

iv
er

y
R

at
e

(%
)

Buffer size at each node (in packets)

MaxProp
Dijkstra

ME/DLE
Random

Fig. 21. Delivery rate.

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 0 50 100 150 200 250 300

M
ed

ia
n

La
te

nc
y

(m
in

ut
es

)

Buffer size at each node (in packets)

MaxProp
Dijkstra

ME/DLE
Random

Fig. 22. Median latency of delivered packets.
Performance within an artificial DTN topology.
(18pkts/h, 40GB buffer, real bus bandwidth and mobility.)

VIII. ACKNOWLEDGMENTS

We are grateful to Tom Caron and Adam Sherson of the
UMass Transit branch of the Pioneer Valley Transportation
Authority for assisting in the creation of UMassDieselNet.

REFERENCES

[1] B. Burns, O. Brock, and B.N. Levine. MV routing and capacity building
in disruption tolerant networks. In Proc. IEEE INFOCOM, pages 398–
408, March 2005.

[2] J. Davis, A. Fagg, and B.N. Levine. Wearable Computers and Packet
Transport Mechanisms in Highly Partitioned Ad hoc Networks. In
Proc. IEEE Intl. Symposium on Wearable Computers, pages 141–148,
October 2001.

[3] M. Grossglauser and M. Vetterli. Locating Peers With Ease: Mobility
Diffusion Of Last Encounters In Ad hoc Networks. In Proc. IEEE
Infocom, April 2003.

[4] S. Jain, K. Fall, and R. Patra. Routing in a Delay Tolerant Network. In
Proc. ACM SIGCOMM, pages 145–158, August 2004.

[5] P. Juang et al. Energy-efficient computing for wildlife tracking: design
tradeoffs and early experiences with zebranet. SIGOPS Oper. Syst. Rev.,
36(5):96–107, 2002.

[6] B. Kantor and P. Lapsley. RFC 977: Network News Transfer Protocol,
February 1986.

[7] D. Kotz, C. Newport, R. Gray, J. Liu, Y. Yuan, and C. Elliott. Experimen-
tal evaluation of wireless simulation assumptions. In Proc. ACM/IEEE
Intl Symp on Modeling, Analysis and Simulation of Wireless and Mobile
Systems (MSWiM), pages 78–82, October 2004.

[8] Q. Li and D. Rus. Sending Messages to Mobile Users in Disconnected
Ad hoc Wireless Networks. In Proc. MobiCom, pages 44–55, August
2000.

[9] A. Lindgren, A. Doria, and O. Scheln. Probabilistic Routing in
Intermittently Connected Networks. In Proc. Workshop on Service
Assurance with Partial and Intermittent Resources, August 2004.

[10] S. Merugu, M. Ammar, and E. Zegura. Space-time routing in wireless
networks with preictable mobility. Technical Report GIT-CC-04-07,
College of Computing, Georgia Institute of Technology, March 2004.

[11] A. Pentland, R. Fletcher, and A. Hasson. Daknet: Rethinking connec-
tivity in developing nations. IEEE Computer, 37(1):78–83, Jan 2004.

[12] N. Sarafijanovic-Djukic and M. Grossglauser. Last Encounter Routing
under Random Waypoint Mobility. In Proc. IFIP-TC6 NETWORKING,
pages 974–988, 2004.

[13] A. Vahdat and D. Becker. Epidemic Routing for Partially-Connected
Ad Hoc Networks. Technical Report CS-2000-06, Duke University, July
2000.

[14] Wizzy digital courier. http://www.wizzy.org.za.
[15] J. Yang and C.-K. Lee Y. Chen, M. Ammar. ”ferry replacement protocols

in sparse manet message ferrying systems”. In Proc. IEEE Wireless
Communications and Networking (WCNC), March 2005.

[16] W. Zhao and M. Ammar. Message Ferrying: Proactive Routing In
Highly-Partitioned Wireless Ad Hoc Networks. In Proc. IEEE Workshop
on Future Trends in Distributed Computing Systems, May 2003.

[17] W. Zhao, M. Ammar, and E. Zegura. A Message Ferrying Approach
for Data Delivery in Sparse Mobile Ad hoc Networks. In Proc. ACM
Mobihoc, May 2004.

[18] W. Zhao, M. Ammar, and E. Zegura. Controlling the mobility of multiple
data transport ferries in a delay-tolerant network. In IEEE INFOCOM,
2005.

[19] W. Zhao, M. Ammar, and E. Zegura. Multicast routing in delay tolerant
networks: Semantic models and routing algorithms. In Proceedings of
the SIGCOMM DTN Workshop, August, 2005.

