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Abstract—We describe an efficient algorithm for releasing
a provably private estimate of the degree distribution of
a network. The algorithm satisfies a rigorous property of
differential privacy, and is also extremely efficient, running on
networks of 100 million nodes in a few seconds. Theoretical
analysis shows that the error scales linearly with the number of
unique degrees, whereas the error of conventional techniques
scales linearly with the number of nodes. We complement the
theoretical analysis with a thorough empirical analysis on real
and synthetic graphs, showing that the algorithm’s variance
and bias is low, that the error diminishes as the size of the
input graph increases, and that common analyses like fitting a
power-law can be carried out very accurately.
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I. INTRODUCTION

The analysis of social networks is crucial to addressing a
diverse set of societally important issues including disease
transmission, fraud detection, efficiency of communication
networks, among many others. Although technological ad-
vances have allowed the collection of these networks (often
massive in scale), privacy concerns have severely restricted
the ability of social scientists and others to study these
networks. Valuable network data remains locked away in
institutions, far from the scientists who are best equipped to
exploit it, because the data is too sensitive to share.

The challenges of analyzing sensitive graph-structured
data have recently received increased attention. It is now
well-known that removing identifiers from a social network
and releasing a “naively anonymized” isomorphic network
can leave participants open to a range of attacks [1],
[7], [17]. In response, a number of more sophisticated
anonymization techniques have been proposed [3], [7], [13],
[22], [23]. These techniques transform the graph—through
the addition/removal of edges or clustering of nodes into
groups—into a new graph which is then published. The
analyst uses the transformed graph to derive estimates of
various properties of the original.

The conventional goals of such algorithms are privacy and
utility, although neither is satisfactorily achieved. Existing
approaches provide anonymity, typically through transfor-
mations that make each node indistinguishable from others,
but they lack rigorous guarantees of privacy. They rely
on the assumption that the adversary’s knowledge is lim-
ited [3], [13], [22] and/or fail to prove that the guaran-

tee of anonymity ensures that private information is not
disclosed [7], [13], [22], [23]. In terms of utility, while
the transformed graph necessarily differs from the original,
the hope is that it retains important structural properties of
interest to the analyst. A drawback of existing techniques is
that they lack formal bounds on the magnitude of the error
introduced by the transformation. A common strategy for
assessing utility is to measure familiar graph properties and
compare these measures numerically to the original data.
Empirically, it appears that with increasing anonymity, the
graph is rapidly distorted and some metrics are systemati-
cally biased [3], [7], [13], [22], [23].

A final limitation of existing techniques is that few scale
to the massive graphs that are now collected and studied.
Most existing techniques have been evaluated on graphs
of about 5,000-50,000 nodes, and may be difficult to scale
much larger [7], [13], [22], [23].

In this work, we focus on a specific utility goal—
estimating the degree distribution of the graph—and develop
an algorithm that provides provable utility, strong privacy,
and excellent scalability. The algorithm returns the degree
distribution of the graph after applying a complex two-
phase process of random perturbation. The error due to
random noise is provably low, yet sufficient to prevent even
powerful adversaries from extracting private information.
The algorithm can scale to graphs with hundreds of millions
of nodes. The techniques we propose here do not result in a
published graph. Instead we release only an estimate of the
true degree distribution to analysts.

We choose to focus on the degree distribution because it
is one of the most widely studied properties of a graph.
It influences the structure of a graph and processes that
operate on a graph, and a diverse line of research has studied
properties of random ensembles of graphs consistent with a
known degree distribution [12], [14], [18].

The simple strategy of releasing the exact degree distri-
bution fails to provide adequate privacy protection. Some
graphs have unique degree distributions (i.e., all graphs
matching this degree distribution are isomorphic) making
the release of the degree distribution no safer than naive
anonymization. In general, it is unclear how to determine
what the degree distribution reveals about the structure of the
graph. The problem is compounded when either the adver-
sary has partial knowledge of graph structure, or the degree



distribution is only one of several statistics published. Our
goal is to design an approach that provides robust privacy
protection against powerful adversaries and is compatible
with releasing multiple statistics.

The algorithms proposed here satisfy a rigorous privacy
standard called differential privacy [4]. It protects against
any adversary, even one with nearly complete knowledge
of the private data. It also composes well: one can release
multiple statistics under differential privacy, so long as
the algorithm for each statistic satisfies differential privacy.
Thus while we focus on the degree distribution, additional
statistics can be incorporated into the privacy framework.

While an existing differentially private algorithm [5] can
be easily adapted to obtain noisy answers to queries about
the degree distribution, the added noise introduces consider-
able error. In this work, we capitalize on a recent innovation
in differentially private algorithms that has been shown to
boost accuracy without sacrificing privacy [8]. The technique
performs a post-processing step on the noisy answers, using
the fact that the queries impose constraints on the space of
possible answers to infer a more accurate result. We apply
this technique to obtain an accurate estimate of the degree
distribution of a graph.

Our contributions include the following.

o (Privacy) We adapt the definition of differential privacy
to graph-structured data. We present several alterna-
tive formulations and describe the implications for the
privacy-utility tradeoff inherent in them.

e (Scalability) We provide an implementation of the
inference step of Hay et al. [8] that is linear, rather
than quadratic, in the number of nodes. As a result of
this algorithmic improvement the technique can scale to
very large graphs, processing a 200 million node graph
in 6 seconds. We also extend the inference technique
to include additional constraints of integrality and non-
negativity.

o (Utility) We assess utility of the resulting degree dis-
tribution estimate through comprehensive experiments
on real and synthetic data. We show that: (i) estimates
are extremely accurate under strong privacy parameters,
exhibiting low bias and variance; (ii) for power-law
graphs, the relative boost in accuracy from inference
increases with graph size; (iii) an analyst can use
the differentially private output to accurately assess
whether the degree distribution follows a power-law.

These contributions are some of the first positive results
in the private analysis of social network data, showing that
a fundamental network analysis task can be performed ac-
curately and efficiently, with rigorous guarantees of privacy.

Admittedly, the degree distribution is just one property
of a graph, and there is evidence that a number of other
properties are not constrained by the degree distribution
alone [12], [14]. Nevertheless, it is hard to imagine a useful
technique that distorts the degree distribution greatly. Thus

it is important to know how accurately it can be estimated,
independently of other properties. A long-term goal is to
develop a differentially private algorithm for publishing a
synthetic graph offering good utility for a range of analyses.
Because of the degree distribution’s profound influence on
the structure of the graph, we believe that accurate estimation
of it is a critical step towards that long-term goal.

II. DIFFERENTIAL PRIVACY FOR GRAPHS

We first review the definition of differential privacy, and
then propose how it can be adapted to graph data.

A. Differential privacy

To define differential privacy, we consider an algorithm
A that operates on a private database I. The algorithm
is randomized and the database is modeled as a set of
records, each describing an individual’s private information.
Differential privacy formally limits how much a single
individual record in the input can influence the output of the
algorithm. More precisely, if I’ is a neighboring database—
i.e., one that differs from I by exactly one record—then an
algorithm is differentially private if it is likely to produce
the same output whether the input is I or I'.

The following is a formal definition of differential privacy,
due to Dwork [4]. Let nbrs(I) denote the set of neighbors
of I—i.e., I’ € nbrs(I) if and only if |I & I'| = 1 where
@ denotes symmetric difference.'

Definition I1.1 (e-differential privacy). An algorithm A is €-
differentially private if for all instances I, any I' € nbrs(I),
and any subset of outputs S C Range(A), the following
holds:

Pr[A(I) € S] < exp(e) x PrlA(I') € 5]
where probability Pr is over the randomness of A.

The parameter € measures the disclosure and is typically
also an input to the algorithm. For example, the techniques
used in this paper add random noise to their outputs, where
the noise is a function of e. The choice of € is a matter of
policy, but typically € is “small,” say at most 1, making the
probability “almost the same” whether the input is I or I’.

An example illustrates why this protects privacy. Suppose
a hospital wants to analyze the medical records of their
patients and publish some statistics about the patient popu-
lation. A patient may wish to have his record omitted from
the study, out of a concern that the published results will
reveal something about him personally and thus violate his
privacy. The above definition assuages this concern because
whether the individual opts-in or opts-out of the study, the
probability of a particular output is almost the same. Clearly,

IDifferential privacy has been defined inconsistently in the literature.
The original definition (called indistinguishability) defines neighboring
databases in terms of Hamming distance [5]. Note that e-differential privacy
(as defined above) implies 2¢-indistinguishability.



any observed output cannot reveal much about his particular
record if that output is (almost) as likely to occur even when
the record is excluded from the database.

B. Differential privacy for graphs

In the above definition, the database is a table whereas in
the present work, the database is a graph. Below we adapt
the definition of differential privacy to graphs.

The semantic interpretation of differential privacy rests on
the definition of neighboring databases. Since differential
privacy guarantees that the output of the algorithm can-
not be used to distinguish between neighboring databases,
what is being protected is precisely the difference between
neighboring databases. In the above definition, a neighboring
database is defined as the addition or removal of a single
record. With the hospital example, the patient’s private infor-
mation is encapsulated within a single record. So differential
privacy ensures that the output of the algorithm does not
disclose the patient’s medical history.

With network data, which is primarily about relationships
among individuals, the correspondence between private data
and database records is less clear. To adapt differential pri-
vacy to graphs, we must choose a definition for neighboring
graphs and understand the privacy semantics of that choice.
We propose three alternatives offering varying degrees of
privacy protection.

We model the input as a graph, G = (V, E), where V
is a set of n entities and F is a set of edges. Edges are
undirected pairs (u,v) such that v and v are members of
V. (Results are easily extended to handle directed edges.)
While the meaning of an edge depends on the domain—it
could connote friendship, email exchange, sexual relations,
etc.—we assume that it represents a sensitive relationship
that should be kept private. The focus of the present work is
concerned with graph structure, so the inclusion of attributes
on nodes or edges is left for future work.

The first adaptation of differential privacy to graphs is
mathematically similar to the definition for tables. Neighbor-
ing graphs are defined as graphs that differ by one “record.”
Given a graph G, one can produce a neighboring graph G’ by
either adding/removing an edge in E, or by adding/removing
an isolated node in V. Restricting to isolated nodes ensures
that the change to V' does not require additional changes
to F to make it consistent with V. Formally, G and G’ are
neighbors if |[V@V'|+|E@®E’| = 1. Because this adaptation
allows neighboring graphs to differ by at most one edge, we
call it edge-differential privacy.

An edge-differentially private algorithm protects individ-
val edges from being disclosed. For some applications,
edge-differential privacy seems to be a reasonable privacy
standard. For example, consider the study of Kossinets and
Watts [10], in which they analyze a graph derived from the
email communication among students and faculty of a large
university. What makes this dataset sensitive is that it reveals

who emails whom; edge-differential privacy protects email
relationships from being disclosed.

However, in some applications, it may be desirable to
extend the protection beyond individual edges. For example,
Klovdahl et al. [9] analyze the social network structure of
“a population of prostitutes, injecting drug users and their
personal associates.” In this graph, an edge represents a
sexual interaction or the use of a shared needle. Edges are
clearly private information, but so too are other properties
like node degree (the number of sexual/drug partners) and
even membership in the network.

A second adaptation of differential privacy to graphs pro-
vides much stronger privacy protection. In node-differential
privacy, two graphs are neighbors if they differ by at most
one node and all of its incident edges. Formally, G and G’
are neighbors if [V @ V’/|=1and E® E' = {(u,v)|lu €
VeV)ove (VeV}

Node-differential privacy mirrors the “opt-in/opt-out” no-
tion of privacy from the hospital example. It assuages any
privacy concerns, as a node-differentially private algorithm
behaves almost as if the participant did not appear in at all.

While node-differential privacy is a desirable privacy
objective, it may be infeasible to design algorithms that are
both node-differentially private and enable accurate network
analysis. A differentially private algorithm must hide even
the worst case difference between neighboring graphs, and
this difference can be large under node-differential privacy.
For instance the empty graph (n isolated nodes) is a neighbor
of the star graph (a hub node connected to n nodes). We
show in Sec III-A that estimates about node degrees are
highly inaccurate under node-differential privacy.

To span the spectrum of privacy between edge- and node-
differential privacy, we introduce an extension to edge-
differential privacy that allows neighboring graphs to differ
by more than a single edge. In k-edge-differential privacy,
graphs G and G’ are neighbors if |V @ V| + |[E@ E'| < k.

A larger setting of k leads to greater privacy protection.
If £ = 1, then k-edge-differential privacy is equivalent to
edge-differential privacy. If k£ = |V/|, then k-edge-differential
privacy is even stronger than node-differential privacy, as the
set of neighboring graphs under k-edge-differential privacy
is a superset of the neighbors under node-differential privacy.
If 1 < k < |V|, then k-edge-differential privacy prevents
the disclosure of aggregate properties of any subset of &
edges. Notice that for those nodes whose degree is less
than k, it provides essentially equivalent protection as node-
differential privacy. Nodes whose degree is k or larger face
more exposure. However, nodes with large degree also have
greater influence on the structure of the graph. If our goal
is to also allow analysts to accurately measure the graph
structure, then it may be necessary to expose high degree
nodes to greater privacy risk.

For the remainder of the paper, we will use k-edge-
differential privacy as our privacy standard.



III. ESTIMATING THE DEGREE DISTRIBUTION UNDER
DIFFERENTIAL PRIVACY

In this section, we review the two techniques that form the
basis of our approach. The first is a technique by Dwork et
al. [5] for answering queries under differential privacy. The
second is a recent technique [8] that post-processes the noisy
output of the Dwork et al. algorithm to improve accuracy. We
use these techniques to obtain a noisy estimate of the degree
distribution of the graph. In the next section, we present a
fast and scalable implementation of the latter technique.

A. Differentially-private query answering

Dwork et al. [5] give a general technique that allows an
analyst to pose an arbitrary set of queries and receive noisy
answers. The input to the algorithm is a sequence of queries
Q where the answer to each query is a number in R. The
algorithm computes the true answer Q(I) to the queries on
the private data and then adds random noise to the answers.
The noise depends on the query sequence’s sensitivity.

Definition IIL.1 (Sensitivity). The sensitivity of Q, denoted
Sq. is defined as
max [ Q(I) — Q(I)]; -

Sq = I1,I'énbrs(I)

The sensitivity of a query depends on how neighboring
databases are defined. Intuitively, queries are more sensi-
tive under node-differential privacy than edge-differential
privacy, because the difference between neighboring graphs
is larger under node-differential privacy.

However, regardless of how neighbors are defined, the
following proposition holds. Let (Lap(c))? denote a d-
length vector of independent random samples from a Laplace
distribution with mean zero and scale o.

Proposition 1 ([5]). Let Q denote the randomized algorithm
that takes as input a database I, a query Q of length d, and
some € > 0, and outputs

Q(I) = QU) + (Lap(Sq/€))*
Algorithm Q satisfies e-differential privacy.

While this proposition holds for any of the adaptations of
differential privacy, the accuracy of the answer depends on
the magnitude of Sq, which differs across the adaptations.
Using an example query, we illustrate the accuracy trade-
offs between k-edge- and node-differential privacy. Let D,,
denote the query that returns the degree of node v if u € V'
and otherwise returns —1.

Since the addition of Laplace noise introduces error of
+S5q/€ in expectation, the accuracy of the answer depends
on € and the sensitivity of D,. Under k-edge-differential
privacy, the sensitivity is k—in the worst case, neighboring
graphs differ by k edges that are all adjacent to u, making
u’s degree differ by k. Thus we expect an accurate answer
to D, when k/e is small relative to u’s degree.

For node-differential privacy, however, the sensitivity is
unbounded, unless we impose some restriction on the size
of the input graph. If graphs are restricted to contain at most
n* nodes, then the sensitivity of D,, is n*—the worst case
is a pair of neighboring graphs where u is connected to the
other n* — 1 nodes in one graph and absent in the other.
Since the magnitude of the error is the same as the range
of D,, the answer is useless. This example suggests it is
infeasible to accurately estimate node degrees under node-
differential privacy because the difference in node degrees
between neighboring graphs is too large.

Finally, we comment on the relationship between k£ and
€. As observed previously, an algorithm that provides e-
differential privacy for neighboring databases that differ
by a single record also provides ke-differential privacy for
neighboring databases that differ by at most k records [4].
To give a concrete example, suppose we run algorithm Q
with € = 0.01 and compute Sq assuming edge-differential
privacy. Then as configured, Q satisfies k-edge e-differential
privacy for k¥ = 1 and € = 0.01; it also satisfies k-edge
e-differential privacy for, say, ¥ = 10 and ¢ = 0.1, or
even k = 100 and ¢ = 1.0. In the next section and in the
experiments, we assume that & = 1; however, the results
hold for k£ > 1 provided that e is appropriately scaled as in
these examples.

B. Constrained inference

Hay et al. [8] introduce a post-processing technique that
operates on the output of algorithm Q. It can be seen as
an improvement on the basic algorithm of Dwork et al. [5]
that boosts accuracy without sacrificing privacy. The main
idea behind the approach is to use the semantics of a query
to impose constraints on the answer. While the true answer
Q(I) always satisfies the constraints, the noisy answer that
is output by Q may violate them. Let ¢ denote the output of
Q. The constrained inference process takes ¢ and finds the
answer that is “closest” to ¢ and also satisfies the constraints
of the query. Here “closest” is measured in Lo distance and
the consistent output is called the minimum Lo solution.

Definition IIL.2 (Minimum L, solution). Let Q be a query
sequence with a set of constraints denoted yq. A minimum
Ly solution is a vector q that satisfies the constraints vq
and minimizes ||q — ql|2.

As discussed in [8], the technique has no impact on
privacy since it requires no access to the private database,
only ¢, the output of the differentially private algorithm.

This technique can be used to obtain an accurate estimate
of the degree distribution of the graph. Our approach is to
ask a query for the graph’s degree sequence, a sequence
of non-decreasing numbers corresponding to the degrees
of the graph’s vertices. Of course, a degree sequence can
be converted to a degree distribution by simply counting



the frequency of each degree. The advantage of the degree
sequence query is that it is constrained, as explained below.

We now define S, the degree sequence query.” Let
deg(i) return the ‘" smallest degree in G. Then, the
degree sequence of the graph is the sequence S =
(deg(1)...deg(n)). Under 1-edge-differential privacy, the
sensitivity of S is 2: suppose a neighboring graph has an
additional edge between two nodes of degree d, d’, then two
values in S are affected, the largest 7 such that S[i] = d
becomes d+ 1, similarly for d’. Let S denote the application
of the algorithm described in Proposition 1 to the S query.
A random output of S is denoted 3.

Query S is constrained because the degrees are positioned
in sorted order. The constraint set for S is denoted s, and
contains the inequalities S[i] < S[i + 1] for 1 < i < n. The
following theorem gives the minimum Lo solution for s.

Theorem 1 ([8]). Given 3, let M[i, j] be the average of the
subsequence 3li, j): M[i,j] = > 7_,5[k]/(j — i+ 1). The
minimum Lo solution § is unique and is defined as s[k] =
maXlgigk minigjgn M[Z,]]

We use S to refer to the algorithm that first computes S
and then applies constrained inference to obtain the above
minimum Lo solution. The following example provides an
intuition for how S uses sort constraints to reduce the error.
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Figure 1.  Example sequence S(I), noisy estimate § = S(I), and

constrained inference estimate 5 = S([).

Example 1. Figure I shows a degree sequence S(I) for a 25
node graph, along with a sampled § and inferred 5. While the
values in § deviate considerably from S(I), s lies very close
to the true answer. In particular, for subsequence [1,20], the
true sequence S(I) is uniform and the constrained inference
process effectively averages out the noise of 5. The twenty-
first position is a unique degree in S(I) and constrained
inference does not refine the noisy answer, i.e., 5[21] = 3[21].

As suggested by the example, the error of S can be
lower than that of S, particularly when the degree sequence

2We simplify the presentation, as well as later experiments, by assuming
that n is known. In practice, n is unlikely to be sensitive, especially for
large networks. Alternatively, one could derive a very accurate estimate of
n using Proposition 1 and then adjust S accordingly. This would result in
a small amount of additional error in the estimate for the number of low
degree nodes.

contains subsets of nodes with the same degree. Hay et
al. [8] theoretically analyze the error in terms of mean
squared_error. For a query Q. the mean square error is
MSEQ) = E[|Q - Q()|l2] = >, E[(Qli] — Qli])?].

where the expectation is over the randomness of Q.

Theorem 2 ([8]). Let d be the number of unique degrees
in S(I). Then MSE(S) = O(dlog® n/€?). In comparison,
MSE(S) = ©(n/e?).

This result shows that error scales linearly with the
number of unique degrees, rather than the number of nodes.
While this is a promising result, it is not clear what lower
M SE in the degree sequence means for an analyst interested
in studying the degree distribution. Furthermore, it is unclear
whether the closed form solution described in Theorem 1 can
be computed efficiently. These issues are addressed next.

IV. ALGORITHM FOR COMPUTING S

We now describe an efficient algorithm for applying
constrained inference to the noisy sequence s. A straight-
forward approach for computing s is to construct a dynamic
program based the definition of s from Theorem 1. However,
it requires linear time to compute each 3[k], making the
total runtime quadratic, infeasible for many large graphs.
We present a novel algorithm that reduces the complexity
to linear time. The algorithm is a dynamic program that
works backwards from the end of the sequence, constructing
a partial solution for a subsequence of 5. By working
backwards, we can reuse computations from previous steps
so updating the partial solution requires only (amortized)
constant time rather than linear time.

Before describing the algorithm, we introduce some no-
tation and restate the minimum Lo solution of Theorem 1
using this notation. Let the minimum cumulative average at
k be denoted as Mj, = mini<;j<x M[k,j]. Then we can
rewrite the solution at 5[k] as follows:

W= g MBI = MO

The basic idea behind the linear time algorithm is to
construct 5 incrementally, starting at the end of the sequence
and working backwards toward the beginning. At each
step ¢, the algorithm maintains a partial solution for the
subsequence S[{, ..., n]—meaning that the sort constraints
are only enforced on this subsequence and the rest of 5 is
ignored. At each step, the subsequence is extended to include
another element of s and the partial solution is updated
accordingly.

We denote the partial solution as 7¢, and from Equation 1,
the value of 7 at position & is equal to

7[k] = max min M[i,j] = max M; (2)
(<i<ki<j<n 1<i<k

Observe that partial solution 7! is equal to the desired 3.



Given a partial solution 7¢, we can extend the solution to

£—1 by extending the subsequence to include the observation
5[¢ — 1] and updating the partial 7 to obtain 7. There are
two components of the update procedure. First, we determine
the value for the new observation at position ¢ — 1. From
Equation 2 the solution is simply the minimum cumulative
average starting at £ — 1; i.e., 771 — 1] = M,_;.

The second step is to check whether including the (¢—1)!"
element requires updating the existing solution for positions
¢,...,n. From Equation 2, we can see that we must update
any k = £, ... ,n where the current solution 7*[k] is smaller
than the new value at £ — 1 position, 7~ 1[¢ — 1]:

k] =  max M;

1—1<i<k
= max (Mg_l, max M7>
0<i<k
= max (fg_l[f — 1},?2[143])

Thus, each step requires first computing M,_; and then
updating the existing solution for positions /,...,n. We
show next that we can use the partial solution 7 to simplify
the cost of finding M,_;. While computing an individual
M,_; can take linear time in the worst-case, the amortized
cost is only O(1). Furthermore, we store partial solution 7
in such a way that once M,_; is found, no additional work
is required to update the solution.

Given a partial solution 7, break it into subsequences
such that each subsequence is uniform and has maximal
length. Let J be the set of indexes marking the ends of
the uniform subsequences. E.g., if all of the elements in 7
are distinct, then J* = {/,...,n}; if the values of 7* are all
the same, then J¢ = {n}.

The following theorem shows how we can use 7 to
compute the minimum cumulative average M,_;. Re-
call that My_1 = ming_1<p<, M[¢ — 1,5]. Let j* de-
note the end index of this minimum average, i.e., j* =
argming_1<j<n, M[¢ —1,7].

L

Theorem 3. Given 7 and a corresponding J*, one of the
following conditions holds. Either, j* = { — 1 or j* € J*.
Furthermore, the set J*~* = {j*}U{j|j € J* and j > j*}.

Theorem 3 shows that the set J* can be used to find
the minimum cumulative average for £ — 1. The algorithm
proceeds by considering the indexes in J* in ascending
order. The initial cumulative average is set to M [/ —1,¢—1],
and the average is extended to the next endpoint in J¢ so
long as it reduces the average. When the average increases,
the algorithm terminates the search. The following Lemma
implies that this will be j*.

Lemma 1. Let j* be defined as
maxe<;j<;j= Mj <My < My,

above, then

During the computation, we need only store the set .J*
instead of the entire sequence of 7. Updating .J* is much

faster than updating 7* and from .J* we can easily reconstruct
the solution 7¢. The details are shown in Algorithm 1, which
computes J* (lines 1-8) for £ = n, ..., 1. Then, it constructs
5 using J! (lines 10-16).

Algorithm 1 An algorithm for computing s given s
: J 0, Jpush(n)
for k& from n to 1 do
ek, § — Jtop()
while J # () and M[j* + 1, 5] < Mk, j*] do
3 3, Jpop(), j « Jtop()
end while
J.push(j*)
end for
b—1
while J # () do
J* « Jpop()
for k£ from b to j* do
s[k] «— Mb, 5%
end for
b—j"+1
: end while
: return s
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Example 2. The following table shows a sample input §
along with the computations used to compute s.

k| 5[k] | 3[k] | argming<;j<n M[E, j]
1|1 M1, 1]
21 9 | 5 M2, 5]
3/ 4] 5 M(3,4]
41 3 | 5 M{[4,4]
50 4| 5 M][5, 5]

The algorithm begins with J5 = {5}. Stack J* becomes
{4,5} after 5[4] is considered since §[4] < Ms. When it
comes to 3[3], the stack J3 is {4,5} since Mz = M|3,4].
When §[2] is added since M[2,5] < M[2, 4], we know My =
M|2,5] and J*> = {5}. Then 3[1] arrives and makes J'
equal to {1,5}. The algorithm rebuilds 5 as 1,5,5,5,5.

The time complexity of Algorithm 1 is O(n). First, once
the stack J is completed, reconstructing 5 (lines 10-16)
clearly takes O(n). Second, the complexity of computing
stack J is also linear: it can seen by considering the number
of times that line 5 executes. Since each execution of line
5 reduces the size of stack J by 1 and there are only O(n)
push operations on stack .J, we know line 5 executes at most
O(n) times. In the worst-case the stack J can require O(n)
space. However, only the top of the stack is accessed during
computations and the rest can be written to disk as needed.

Incorporating additional constraints: The output of
the algorithm, S, may be non-integral and include negative
numbers, when in fact the values of the true degree sequence



are constrained to lie in {0,...,n — 1}. We would like
a solution that respects these constraints since they are
required in many applications. Theorem 4 shows that such
a solution is computed from 5 by simply rounding.

Theorem 4. Let v§ be the constraint set ys augmented with
the additional constraint that each count be an integer in the
set {0,...,n — 1}. Given 3, the minimum Lo solution for
constraint set 7ys, let 5’ denote the sequence derived from s
in which each element S[k] is rounded to the nearest value
in {0,...,n —1}. Then §' is a minimum Lo solution that
satisfies the constraint set ~y§.

V. EXPERIMENTS

The goals of our experiments are two-fold. First, we
assess the scalability of the constrained inference algorithm
introduced in Section IV. Second, we want to understand
the tradeoff between privacy and utility. To do so, we first
characterize how the noise introduced for privacy distorts the
degree distribution. Then, using several metrics to compare
distributions, we assess how accurately the distributions

derived from S and S approximate the true degree dis-
tribution. The accuracy depends on e, which governs the
amount of privacy. We also assess how the privacy-utility
tradeoff changes with the size of the graph (does a bigger
graph allow for better utility at a fixed level of privacy?).
Finally, we consider one of the most common tasks that
analysts perform on a degree distribution: assessing whether
it follows a power-law. We measure how the added noise
affects the fit of a power-law model.

We experiment on both synthetic and real datasets. The
real datasets are derived from crawls of four online so-
cial networking sites: Flickr (=1.8M nodes), LiveJour-
nal (=5.3M), Orkut (=3.1M), and YouTube (=1.1M) [16].
To the best of our knowledge, these are the largest publicly
available social network datasets. The synthetic datasets
include Random, a classical random graph, which has a
Poisson degree distribution (A = 10), and Power, a random
graph with a power-law degree distribution (a = 1.5).

A. Scalability

Figure 2 shows that the runtime of Algorithm 1 scales
linearly and is extremely fast. The left figure shows the
runtime on the real datasets and the right figure shows the
runtime on even larger synthetic datasets of up to 200M
nodes. In addition to Random and Power, we include two
non-random synthetic distributions, corresponding to the
best- and worst-case inputs for the runtime of the algorithm.
The best-case is Regular, a uniform degree distribution (all
nodes have degree 10), the worst-case is Natural, a distribu-
tion having one occurrence of each degree in {0,...,n—1}.

The small variation in runtime across datasets shows
that it is not particularly sensitive to the type of degree
distribution. Furthermore, it is extremely fast: processing a
200 million node graph takes less than 6 seconds. In contrast,

the algorithm of Hay et al. [8] takes 20 minutes for a 1
million node graph and over an hour to process a 2 million
node graph. The efficiency of the improved algorithm makes
the constrained inference approach practical for large graphs.
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Figure 2. Runtime of Algorithm 1 on real (left) and larger synthetic

datasets (right).

B. Utility

We use two measures we use to assess accuracy. First,
we use the Kolmogorov-Smirnoff (KS) statistic, a measure
used to test whether two samples are drawn from the
same distribution. Let the empirical cumulative distribution
function (CDF) of sample X = X;,...,X,, be defined as
Fx(z) =1 %"  I[X; < z]. Then the KS statistic between
X and Y is KS(X,Y) = max, |Fx(z) — Fy(z)|.

The KS statistic is insensitive to differences in the tails of
the two distributions, so we also use the Mallows distance
(aka Earth Mover’s distance) to capture deviations in the tail.
Given samples X and Y each of size n, with X ;) denoting
the i*" largest sample in X, the Mallows p-distance is

1 <& 1/p
Mallows,,(X,Y) = (E Z | X @) — Y(i)|p)
i=1

An example shows how Mallows distance is more sensitive
than the KS statistic to the tail of the distribution. Consider
three graphs A, B, and C' in which all nodes have degree 1,
except in B one node has degree 2 and in C' one node has
degree n— 1. The KS statistic between A and either B or C
is O(n~1). The Mallows distance (p = 1) between A and B
is O(n=1), but between A and C, the Mallows distance is
O(1), capturing the difference between their largest degrees.

A visual comparison of distributions: Figure 3(a) shows
the true degree distribution along with the differentially
private approximations, revealing that S produces a very
accurate approximation while S does not. The distributions
are represented using the complementary CDF (CCDF),
denoted C'F' and defined as CFx(z) = 1 — Fx(z). Thus,
each line shows what fraction of nodes have a degree greater
than the given value on the x-axis. Abusing notation, we
use S(I), 5, and 5, which are all degree sequences, to refer
to their corresponding degree distributions. Thus, the line



labeled S(I) refers to the true degree distribution and the
lines labeled 5 and s refer to the degree distributions derived
from differentially private sequences s and s (here € = 0.01).

Figure 3(a) shows that noise added to produce S substan-
tially distorts the degree distribution. In contrast, 5 is a much
more accurate approximation of S(7). While 5 exhibits some
deviations from the true distribution, the deviations appear
to oscillate around the true distribution. This demonstrates
that, by exploiting the sort constraints, constrained inference
can filter out much of the noise in s.

Bias & variance analysis: In addition to showing
individual samples § and 5, we also analyze the bias and
variance of randomized algorithms S and S. More pre-
cisely, we measure bias of S as the expected difference
between the CCDFs of S and S(I) for each degree—i.e.,
biasg(r) = E[CFg(z) — CFg(y)(x)] where the expectation
is over the randomness in S. The variance of S is varg(z) =
E[(CFg(z) — E[CFg(x)])?]. We focus on S because it is
evident from Figure 3(a) that S exhibits substantial bias.

We evaluate the bias/variance of S empirically thru re-
peated sampling. The results are shown in the bottom panel
of Figure 3(a). The y-axis is the difference in cumulative
probability between S and S, CFg(z) — CFg(py(x). The
line shows the average difference (bias) and the error bars
depict the standard deviation from the average (square root
of variance). The line remains near 0, suggesting that S may
be an unbiased or nearly unbiased estimator of S(I). The
variance peaks wherever the CCDF exhibits steepest change.

Accuracy vs. privacy: Figures 3(b) and 3(c) show
the relationship between privacy and the accuracy for two
measures of accuracy—KS in 3(b), Mallows in 3(c). We
report the average accuracy over 10 trials (random samplings
of §). The amount of privacy is controlled by the parameter ¢
(horizontal axis)—smaller € corresponds to stronger privacy.
_ The results show that S is uniformly more accurate than
S, across all datasets, settings of €, and both measures
of accuracy. Furthermore, for low settings of € (stronger
privacy), the difference in accuracy is greater, suggesting that
the benefit of constrained inference increases with privacy.

Also shown in the figure is the accuracy of an estimate
based on random sampling (10% of the degrees are sampled
uniformly at random). While sampling does not provide
differential privacy, it can serve as a useful reference point.
Sampling has very low KS distance (as expected), but higher
Mallows distance because random sampling is unlikely to
select the high degree nodes in the tail. In fact, sampling has
higher Mallows distance than S (except on Random, which
is a distribution without long tails). Since analysts often
cannot obtain complete graphs and must rely on samples,
this result suggests that the additional error due to privacy
can be small compared to the sampling error.

Accuracy vs. size: Figure 3(d) shows how the privacy-
utility tradeoff of S improves as the graph increases in size.
The figure reports accuracy on Power graphs of varying size,

from 10K to SM nodes. The results show a clear separation
between S and S: as the size of the graph increases, the
accuracy of S remains constant whereas the accuracy of S
improves. Thus, with S, larger datasets yield either more
privacy (given a fixed accuracy target, we can lower €) or
better utility (higher accuracy for fixed ).

The accuracy of S does not improve with graph size
because random noise is added to each degree, thus the
average error per degree does not change with the size of the
graph. However, as Example 1 showed, S can be very accu-
rate when the degree sequence contains long subsequences
of uniform degrees. As the graph size increases, accuracy
improves because the subsequences of uniform degree grow
longer (in a power-law graph, the expected proportion of
nodes with a given degree is a constant independent of n).

In this experiment, the parameters k and € of the privacy
condition remain fixed as n increases. If node degrees were
to increase with graph size, then holding e fixed would mean
that while the absolute disclosure remains fixed, the relative
disclosure about a node’s neighborhood would increase
with n. When evaluating graph models where node degrees
increase with size (e.g., forest-fire graphs [11]), it may be
appropriate to decrease € as n increases.

Modeling power-law distributions: Our final exper-
iment assesses how accurately the analyst can estimate
the parameters of a power-law model using S or S. The
experiment is designed as follows. First, we sample a Power
graph with parameters 0 = (o = 1.5, 2., = 10). We
fix this as the true degree distribution. Then we sample §
and 5 and derive corresponding distributions. To each of
these three degree distributions, we fit a power-law model
using maximum likelihood [2]. The result is three different
estimates for the parameters §, which we denote é 9~ and
0 respectively. We are interested in comparing the model fit
to the true degree djstribution, é, to the models fit under
differential privacy,  and 6.

The individual parameter estimates are shown in the
middle and right plot of Figure 3(e), but the leftmost plot
provides a holistic assessment of the model fit. It assesses
model fit using the D statistic of Clauset et al. [2] which
measures the KS statistic on the power-law tail of the
distribution. We consider two variants of this measure: in
one, the tail is defined by the estimate of x,,;, under s or
3; in the other, x,,;, is based on the true x,,i,.

The plots reveal that using either S or S, the analyst will
estimate a model that has a close fit to the tail of the original
(power-law) distribution, when the tail is defined by the
Tmin estimated on the noisy distribution. However, it also
shows that the size of the tail is under-estimated (the power-
law behavior becomes apparent only for large degrees). If we
compare the models based on how well they fit the true tail
of the powe~r—1aw distribution (solid lines of leftmost plot),
we see that S has considerable distortion (note the log-scale)
while S is reasonably accurate even at small e.



° flickr livejournal orkut youtube power random
> - [ =
RN = N - \ N
—- N ~
21 ) : \ \ \
- @ S \ \
g\ —
28] _\ —\\ _ \
5. \\ N \\ \ \
o \ ‘
~ N\,
S \ ~
S \
S -~ ~
-~ ~ - ‘
g — — e
£8 /i\x/k JU
Eg ] |t . . L LT | \H ‘W
£°] =+ T i Il 11
5w ]
=1
7T T T T T — T T T T S —T— — T T T T S —T— — T T T T T
0o 1 4 9 19 49 0 1 4 9 19 49 0 1 4 9 19 49 99 [ 4 9 19 49 0 1 4 9 19 49 99 0o 1 4 9 19 49
X X X X X X
(a) Complementary CDFs of S(I), § and 5 (top). Bias of S (bottom)
o flickr livejournal orkut youtube power random
3
» <
o3
8o
g3
5
2 o
S 3
12}
X
S
°
3
0.010 0.032 0.100 0.320 1.000 0.010 0.032 0.100 0.320 1.000 0.010 0.032 0.100 0.320 1.000 0.010 0.032 0.100 0.320 1.000 0.010 0.032 0.100 0.320 1.000 0.010 0.032 0.100 0.320 1.000
€ € € € € €
(b) Privacy (e) vs. Accuracy (KS distance)
flickr livejournal orkut youtube power random
LR
28
8 g4
587
7 8
s _
257
58
K]
E 30 el 1 e A | I i I SRS
8™ T T T 4 T T T ™ T T T 4 T T T 4 T T T T T T ' T
0.010 0.032 0.100 0.320 1.000 0.010 0.032 0.100 0.320 1.000 0.010 0.032 0.100 0.320 1.000 0.010 0.032 0.100 0.320 1.000 0.010 0.032 0.100 0.320 1.000 0.010 0.032 0.100 0.320 1.000
€ € € € € €
(c) Privacy (e) vs. Accuracy (Mallows distance with p = 2)
o power s power Power-law Fit « Estimating o NG Xomin
° = o - il O 6 from Rmn 3 - & B 0= Xmin
< s o ﬁ § s O 6 from Xy J a 3 | - zgg‘ple
S s s S e _-
@ sampling 28 @ sampling 0 S BfromXxy, | <2 2 | © —a
2 e e A -\ from%y, || 22 ° ~a
3 @ g 5o <
g8 o s A 8o - - BRom & 5 ~
§ 2 5 S W A x
2w 22 3 S 2g 1
o ° H A 38/
[} 35 v 28 S 2o 31
< - I hE-RLEE - < 4
S = 3 Rt T N
0e+00 2e+06 4e+06 0e+00 2e+06 4e+06 0010 0032 0100 0.320 1.000 0010 0032 0100 0320 1.000 0010 0032 0100 0.320 1.000
size size £ £ £

(d) Size vs. Accuracy for fixed e = 0.01

() Accuracy of estimating power-law model using S, S.

Figure 3. The privacy-utility tradeoff of two differentially private estimators S and S.

VI. RELATED WORK

The constrained inference technique that underlies this
work was originally proposed in [8]. That work focuses on
using constraints to improve accuracy for a variety of count-
ing queries. While applications to degree estimation were
recognized by the authors, a number of issues necessary
for practical network analysis were left open. The present
paper shows that inference only requires linear time and
that the framework can be extended to include the additional
constraints of integrality and non-negativity constraints. Fur-
ther, we resolve open questions about the practical utility of
the algorithm—showing that it scales to large graphs and

produces accurate, nearly unbiased estimates of the degree
distribution—and provide a more complete characterization
of the privacy-utility tradeoffs.

Most prior work focuses on protecting privacy through
anonymization, transforming the graph so that nodes cannot
be re-identified [3], [7], [13], [22], [23]. The output is a
published graph which the analyst can study in place of the
original. While publishing a graph allows a broader range of
analysis, anonymization is a much weaker notion of privacy
and is vulnerable to attack (e.g., [6], [21]).

Furthermore, for the analyst interested in studying the
degree distribution, these techniques may not scale to large



graphs and can introduce considerable distortion. For exam-
ple, the technique of Liu & Terzi [13], which is the most
scalable approach, appears to considerably bias power-law
degree distributions, reducing the power-law coefficient by
0.5 for reasonable settings of the privacy parameters. Our
estimates have much smaller error (e.g., 0.004 at e = 0.01)
and satisfy a much stronger privacy condition.

Differential privacy has been an active area of research
(Dwork [4] provides a survey). Enabling accurate analysis
of social networks is an often mentioned goal, but we
are aware of only a few concrete results: techniques for
computing properties such as clustering coefficient that have
high sensitivity [19], [20] and a forthcoming approach that
estimates the parameters of a random graph model [15].

VII. CONCLUSION

For the task of approximating the degree distribution of a
private social network, we present an algorithm that protects
privacy, scales to large graphs, and produces extremely
accurate approximations. Our approach satisfies differential
privacy, which means that, unlike approaches based on
anonymization, it provides extremely robust protection, even
against powerful adversaries. Finally, given the importance
of the degree distribution to the structure of a graph, we
believe that our techniques are a critical first step towards
the ultimate goal of publishing synthetic graphs that are both
accurate and ensure differential privacy.
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