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Abstract—Increasingly, visualization practitioners are working with, using, and studying private and sensitive data. There can be many
stakeholders interested in the resulting analyses—but widespread sharing of the data can cause harm to individuals, companies, and
organizations. Practitioners are increasingly turning to differential privacy to enable public sharing of data with a guaranteed amount of
privacy. Differential privacy algorithms do this by aggregating data statistics with noise, and this now-private data can be released visually
with differentially private scatterplots. While the private visual output is affected by the algorithm choice, privacy level, bin number, data
distribution, and user task, there is little guidance on how to choose and balance the effect of these parameters. To address this gap, we
had experts examine 1,200 differentially private scatterplots created with a variety of parameter choices and tested their ability to see
aggregate patterns in the private output (i.e. the visual utility of the chart). We synthesized these results to provide easy-to-use guidance
for visualization practitioners releasing private data through scatterplots. Our findings also provide a ground truth for visual utility,
which we use to benchmark automated utility metrics from a variety of fields. We demonstrate how multi-scale structural similarity
(MS-SSIM), the metric most strongly correlated with our study’s utility results, can be used to optimize parameter selection. A free copy
of this paper along with all supplemental materials is available at https://osf.io/wej4s/.

Index Terms—Scatterplots, differential privacy, data study, visual utility.
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1 INTRODUCTION

ESEARCHERS need to analyze sensitive and personal

data to answer important questions in research areas
such as racial discrimination, cancer screening, or health
outcomes. This data— from medical records, payment infor-
mation, search queries, fitness tracking—in its unaltered state
cannot be shared with the public [73], and its availability is
either confined to a small group of researchers or requires
lengthy information release processes [24].

Data can be more safely shared through the use of
differential privacy algorithms [14], which protect individual
privacy while enabling the public’s ability to see aggregate
patterns. As illustrated in Fig. 1, these algorithms release
the data as aggregate statistics with a specified amount of
noise added, guaranteeing, to a set level of privacy e, that
an attacker cannot know whether or not an individual’s
data was used in the released output. However, no such
guarantees are provided for the utility of the output.

The privacy-protecting addition of noise can obfuscate or
even alter the original patterns found in the data [46], [69]—
as shown in Fig. 2 and throughout this paper. This drop in
utility affects any private release of the data, whether as a
statistic, table, or visualization. Given that data can contain
important patterns that are much more easily understood
visually [2], we are interested in investigating the possible
drop in utility of visualizations showing differentially private
data versus the original data.
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We use the term visual utility to characterize how well a
differentially private visualization retains its ability to let the
user generate the same insights as the original visualization.
There is a lack of consensus on how to best evaluate the
utility of a privacy-preserving visualization [4], [57], [67],
and visual utility has rarely been discussed in the differential
privacy community because data is generally released as
numerical values from queries on a database [13], [67].

There has been some preliminary work investigating
how adding noise to protect privacy affects the resulting
visualizations [46], [69]—but there is little concrete direction
provided to data curators. The impact on visual utility
depends on the choice of algorithm for adding the noise,
privacy level ¢, user task, data distribution, and bin size.
The noise addition can prevent the data user (e.g. public
health researcher) from completing their tasks and generating
insights from the private scatterplots. Data curators need to
balance the trade-offs between privacy and visual utility
when releasing data, but they need more information about
how their choices can affect visual utility [52].

The work presented here, based on an expert evaluation
of 1200 differentially private scatterplots, provides evidence-
based guidelines for data curators to create and evaluate
their private visualizations. We focus on scatterplots because
(1) they are frequently used to highlight interesting patterns
and distributions between two variables [22], and (2) it is
challenging for data curators using scatterplots to protect
privacy because scattered points often directly correspond to
individuals. Scatterplots have no aggregation like we see in
many other chart idioms, so we must rely on data obfusca-
tion approaches, such as differential privacy algorithms, to
provide privacy guarantees.

Our narrow focus—only dealing with one chart idiom—
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Fig. 1: Illustration of how a differentially private algorithm generates private data from the original data. The data is binned
through count queries, denoted F'(x). Noise is added from Laplace distributions dictated by e. The output is a differentially
private scatterplot composed of F(x) + noise = M(x).
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Fig. 2: A binned scatterplot (a.k.a. heatmap, leftmost plot) uses a color scale to show how many points occur in each cell. A
malicious viewer could unambiguously locate a data point by knowing only the value for one of its plotted attributes—thus,
determining the likely value of the point’s unknown attribute. We can reduce the amount of private information exposed
by using differential privacy. Here, we show the results of three of the five algorithms we tested (AHP, DAWA, Laplace)
for creating differentially private scatterplots. Each scatterplot has the same theoretical privacy guarantee, e = 0.2, but each

algorithm adds noise differently. The choice of algorithm clearly affects the visual utility of the resulting scatterplot.

lets us investigate the factors affecting visual utility thor-
oughly. In particular, our data study evaluated each combi-
nation of:

¢ 5 algorithms for adding noise:

[DAWA, AHP, AGrid, Laplace, Geometric Truncated]

« 4 privacy levels e: [0.50,0.10,0.05,0.01]

« 2 bin sizes: [32 x 32,64 x 64]

« 20 data distributions: [0..19], each a canonical scatterplot

from each of Pandey et al.’s categories [47]

« 3 user tasks: [Clusters, Distributions, Correlation], filter-
ing the tasks as appropriate for each data distribution
We created 1200 differentially private scatterplots for these
combinations. For each, we had three three visualization
practitioner-researchers assess its visual utility using an as-
sessment rubric and their perceptual judgment. We analyzed
the data from this expert assessment to determine how each

parameter affects the visual utility of private plots.

We used our expert-generated ground truth to assess
several statistical metrics and determine which best approxi-
mates visual utility. Currently, there are no empirically-driven
metrics for quantifying the utility of differentially private
visualizations [4], [57], [67]. Traditional metrics used to
evaluate differentially private algorithms, such as Average

Per Query Error (APQE) [29], can produce scatterplots that
have the same score but produce very different visual repre-
sentations [67]. For example, Fig. 4 shows two scatterplots
with similar APQE (statistical evaluation metric — Fig. 3)
that produce different visual results. Therefore, to assess the
quality of these metrics, we compare the following evaluation
metrics to our expert judgements:

e 5 metrics for visual utility: [MS-SSIM, Average Per
Query Error (APQE), Earth Mover’s Distance, KSTest,
Scagnostics]

Our findings fill the gap of having accurate metrics for
both privacy and utility when generating privacy-preserving
visualization. Moreover, our groundwork and methodology
for comparing automated utility metrics could be applied to
other comparisons of statistical metrics related to private or
non-private visualizations.

In particular, the key contributions of this work are:

1) A comparison of how the combination of differential pri-
vacy algorithm, privacy level, data distribution, and bin
size affects the visual utility of the resulting scatterplots
for user tasks.

2) Guidance for data curators on how to adjust parameters



to create more perceptually-consistent privacy-preserving
scatterplots.

3) An assessment of how well common statistical utility
metrics correspond to expert ratings of perceived utility.

We hope to see future researchers adopt our methodology
to understand other differentially private chart idioms, as
well as to evaluate visual distribution similarities.

2 SUPPLEMENTAL MATERIAL

A copy of this paper, along with all supplemental materials, is
available at https://osf.io/wej4s/. This includes all materials
required to reproduce and replicate this study—dataset-
generating code, study plot generation code, study website,
collected data, data analysis code, and code to generate the
figures. To avoid issues stemming from postdiction such
as hindsight bias, overconfidence in post hoc explanations,
and underestimating uncertainty, we preregistered our study
on the Open Science Framework (OSF) before running the
experiment. Our preregistered study design and analysis
code is available at https://osf.io/25xhn. Please view the
collected data at the accompanying website (linked).

3 BACKGROUND

Our study examines how a variety of parameters affect the vi-
sual output of differentially private scatterplots and extends
those results to find ways to automate utility evaluation.
We first introduce the topic of differential privacy then our
literature review follows the same format: an investigation
of privacy-preserving visualization followed by visual utility.
Research papers on privacy-preserving visualization often
either help researchers select a level of privacy for specific
datasets or provides general information on how privacy
affects a broad range of data visualizations. In contrast,
by focusing specifically on scatterplots, our research gives
clear guidelines on how privacy affects scatterplots but also
investigates the many other variables a data curator must
decide on. We also found that the concept of visual utility is
defined in many different ways, with no clear understanding
of which statistical metrics best represent visual utility.
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Fig. 3: Illustration of how the Average Per Query Error
(APQE) automated metric is calculated across samples. The
metric takes random queries and finds the difference in
counts between original and private outputs dividing by total
queries (middle figure). These type of automated metrics are
crucial for quickly evaluating the utility of many attributes
or testing new algorithms.

3.1

Differential privacy is a statistical property, or guarantee, of
an algorithm. It guarantees that the query outputs on the
original and private dataset are indistinguishable whether
or not a specific person’s data is contained in the dataset. It
has been widely adopted by governments [1] and influential
organizations [19] due to its mathematically-proven guaran-
tees of privacy against “all reasonable” attacks [13]. For a
more thorough non-technical explanation of how differential
privacy works and protects individuals from attacks, refer to
the work done by Wood et al. [64].

The basic building blocks of a differentially private
algorithm, M(x), are illustrated in Fig. 1. They are: the non-
private algorithm F(z) and the addition of noise. In the
case of a scatterplot, F'(z) is a count query over a range
dictated by the bin size, and noise addition is a random value
chosen from a distribution specified by €. € has an inverse
relationship to the level of injected noise, meaning smaller €
translates to more noise added. The more noise added, the
less sure the attacker will be that their previous knowledge
is being validated by the data they see. Therefore, ¢ can be
thought of as a tuning knob between privacy and utility [64].
A key point to make here is that, while many parameters
affect visual utility (algorithm, ¢, bin size, data distribution,
user task), € is the only one that specifies the level of privacy
(protection of an individual’s data). By holding e constant
and adjusting the other parameters, we can investigate their
influence on visual utility at the same theoretical privacy
level. Fig. 2 demonstrates this principle by showing three
private scatterplots that represent equal privacy guarantees
but produce different visual outputs.

Differential Privacy

3.2 Privacy-Preserving Visualization

In a review summing up the research at the intersection
of data privacy and visualization, Bhattacharjee et al. [4]
discuss how visualizations have been used to empower the
record owner (understanding of internet privacy policies)
[9], data curator (helping them select the correct level of
privacy) [8], and data recipient (maximizing the utility of
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Fig. 4: DAWA & AHP have comparable Average Per Query
Error (APQE) [29]—a common metric for comparing differ-
ential privacy algorithms—but produce two disparate visual
results. Therefore, we cannot necessarily count on statistical
metrics for our judgments of visual utility.
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the disclosed data) [38]. Our work focuses on providing the
data curator with a better understanding of how their data
curation choices will influence the utility of the plots, which
will not only make their job easier, but also benefit the data
users as the key patterns and insights are clearer.

Since the data curator has to make many difficult
decisions—and usually has little expertise in differential
privacy—researchers have created studies and designed
systems to assist them. In GraphProtector [59], Wang et al.
created a user interface to help test how different algorithms
hide and protect sensitive attributes in a node-link diagram.
Wang et al. [60] had previously built a system that helps
users understand the privacy risks associated with selecting
certain privacy parameters for multi-attribute tabular data.
They allow the data curator to apply various algorithms,
including differential privacy, to the tabular data and and
use a utility comparison view to help the user make decisions.
Dobrota [10] designed a tool to help data curators select an
appropriate € by displaying visualizations that show the
difference in values between the original and private data.
Likewise, Nanayakkara et al. [44] and John et al. [34] created
visualizations for selecting € values. These systems guide
the data curator in their parameter decision-making process
for a single dataset. They do not test or provide concrete
information on how the parameters affect a broad range of
data and visual outputs. A data curator trying to develop a
background understanding of the parameters affecting visual
output would need to go through the time-consuming and
tedious process of using previous systems to guess and check
across a variety of datasets. In this paper, we try to quantify
and analyze this information so that end users can more
readily develop an intuition of what will work.

Within the narrower focus on scatterplots, several re-
searchers have investigated the effect of applying privacy
techniques. In one of the first papers on privacy-preserving
visualization, Dasgupta et al. [7] demonstrated how adjusting
the k value in k-anonymity will affect a scatterplot’s privacy
and utility based on the user’s ability to encode and decode
uncertainty. Zhang et al. [69] tested how different levels
of privacy affect users’ ability to complete a variety of
tasks using scatterplots. Their study examined one algorithm
(Laplace) at three levels of privacy, demonstrating that users
better retain their ability to do summary tasks versus value
tasks with private plots. In a similar study, Lee [39] provided
some background information on how differential privacy
affects visualization outputs for a variety of charts, but no
concrete guidance aside from showing that visual quality
quickly degrades for private scatterplots with differential
privacy. From these papers the reader is left with essentially
one conclusion regarding selecting parameters to create
private scatterplots—that the data curator should maximize
e. While this is important knowledge, it only addresses one
parameter the data curator must be aware of.

In the literature, there is little guidance regarding the
other necessary decisions a data curator must make: al-
gorithm, bin size, or how data distribution and user task
will affect the utility of the private scatterplot. Instead of
taking a broad scope and investigating many visualizations
or only investigating one parameter, our study narrows
the visualization type allowing us collect and analyze data
on all the necessary parameter choices. By quantitatively

4

assessing all the parameters necessary for the generation of
differentially private scatterplots, we create concrete, easy,
and accessible guidelines to increase the visual utility of
privacy-preserving scatterplots.

3.3 Visual Utility

While research on differential privacy agrees on € as a metric
for privacy-preservation, there is little consensus about how
visual utility can be qualified or quantified [4]. Recall that
these are separate considerations—e.g., in Fig. 2 we fixed €
but the visual utility of the three private visualizations could
vary markedly. Different research areas (differential privacy,
data visualization, and privacy-preserving visualizations)
each have come up with different definitions and metrics of
utility (Table 1). This problem is compounded by the fact that
two plots with the same statistical summaries can be visually
distinct [4], [67] (see, e.g., Fig. 4 and [2], [41]). Therefore, a
data curator expecting to retain the high visual utility of
the released data may assume that an automated metric
preserves both privacy and visual utility and/or revert to
carefully inspecting each plot. We aim to solve the data
curator’s predicament by providing a better understanding
of visual utility and how to automate its evaluation. We
tackle this problem in three stages: collect ground truth on
the visual utility of private plots, find common and effective
automated metrics, and test which metrics best align with
the ground truth data.

To define visual utility and evaluation criteria, we first
look at data visualization literature. Utility or effectiveness is
often quantitatively evaluated by measuring how accurately
users can complete a task using the provided visualizations
[18]. Our evaluation tasks will test if users can extract the
same overall patterns from the private data since differential
privacy is meant to preserve aggregate patterns without
revealing individual information. Therefore, we look for
metrics related to evaluating the shape similarity or similarity
of two scatterplots as they correspond to pattern retention.
Previous work by Matute et al. [42] and Pandey et al. [47]
use human evaluators to set perceptual groupings as ground
truth for plot similarity. Our work similarly uses human
perception as ground truth, but we extend the definition of
utility beyond overall plot similarity to be task (correlation,
clusters, distribution) dependent.

The work by Zhou et al. [72] uses this definition of
visual utility when designing an interactive system to modify
private synthetic data generators. Parts of their interface
evaluate how well the visual patterns are preserved. While
their method is promising, the privacy algorithms they use
and compare require an ¢ that is meaningfully higher than
our maximum e and larger than recommended standards
to produce a visual with reasonable utility [17]. In a similar
paper, Zhang et al. [69] investigate how differential privacy
affects the utility of different types of visualizations and
provide a basis for the work described here. They collect
data on the utility of a variety of differentially private
visualizations by asking users to give exact numerical
answers for specific tasks. We do not use this approach
as differential privacy is meant to prevent accurate numerical
answers—participants will inherently respond erroneously
due to the added noise. Instead, we ask participants to



Metric Field Explanation Reasoning
MS-SSIM [61] Image Measures image structural similarity ~ Our goal in retaining utility is retaining visual similarity. MS-
(Wang et al.) Similarity taking into account influences of SSIM evaluates how closely one image resembles another so
pixels close to each other. therefore it will likely correspond closely with visual utility.
Average Per Differential Takes random 2D queries of the data ~ APQE has been used to benchmark utility of a variety of
Query Error Privacy and finds the difference between algorithms across many parameters [29]. We include this metric
(APQE) (Hay et original data and private data. under the assumption that smaller differences in the original
al.) [29] and private data will lead to more similar visual outputs.
Earth Mover’s Privacy- Compares the probability Earth Mover’s Distance has been used to evaluate pri-
Distance [60] preserving distributions on two dimensions to vacy/utility tradeoffs in multi-attribute data [60]. We include
(Wang et al.) visualizations evaluate similarity. this metric because we believe the closer the distributions of two
datasets, the more likely they will retain their visual patterns.
KSTest [49], [55] Differential Kolmogorov-Smirnov test—The KSTest is available in the popular differential privacy bench-
(Tao et al.) Privacy probability that two samples are marking library SDGym [49] and has been used to compare
drawn from the same distribution. synthetic data generators [55]. We include this metric because
we believe the closer the distributions of two datasets, the more
likely they will retain their visual patterns.
Scagnostics [62] Data Graph-based metrics quantifying Scagnostics has been used to evaluate scatterplot similarity
(Wilkinson et al.)  Visualization scatterplot shape across 9 criteria. [42]. We believe that if two scatterplots are similar across the 9

criteria, then they will be visually similar as well.

TABLE 1: Automated utility metrics from several domains and our reasoning for their inclusion in the study.

evaluate how well general patterns in the data are preserved.
Our study borrows from this previous work to create the
first large publicly-available corpus of visual utility ground
truth against which automated metrics can be accurately
measured.

There is a lack of guidance in the literature regarding
which automated (statistical) metric one should choose to
best evaluate the visual outputs of private data. We define
automated as metrics that can be derived from statistics
of the data and therefore require no human in the loop.
Automated metrics can help data curators particularly when
a dataset has many attributes or the curator has insufficient
time to visually inspect the differentially private outputs to
ensure they retain appropriate levels of utility for the data
user. Therefore we collect common metrics from a variety of
fields—described extensively in Table 1—to see which metric
most effectively quantifies visual utility. All the metrics are
used to evaluate utility in their respective fields, but data
curators have no empirical evidence for which is best as they
are never compared against one another. We implement and
evaluate each of these metrics against the ground truth of
visual utility set forth earlier.

To summarize, our paper is the first to collect a large
dataset of visual utility scores and automated metrics scores
and compare them against each other. We are the first to
rank these metrics based on their efficacy in predicting the
visual utility. This provides data curators with empirically-
derived guidance for which metrics to use when they wish
to automatically determine the visual utility of a private plot.

4 EXPERIMENTAL DESIGN & METHODS

Our goal is to provide actionable guidance to data curators
for each parameter choice they must make when generating
private scatterplots. Therefore, we test and evaluate how
all the necessary parameter choices (differential privacy
algorithm, privacy level (¢), bin size, data distribution, user
task) will affect the visual utility of private scatterplots. Our
study design process emulates the knowledge acquisition
process that a data curator might go through after working

with many different datasets and parameters. To do so, we
conduct a data study [51] where many datasets are viewed
by a few people rather than a few datasets being viewed
by many people. Following prior work, [50], [51] we choose
this design since we anticipate that data parameters have a much
bigger impact on visual utility than human perception variability.
We confirm this using an inter-rater reliability metric (see
Section 4.2 for more details). This metric shows that the vast
majority of the variation in the utility ratings stems from the
manipulated variables rather than the reviewers’ perception
of the output. We also choose a small group of raters since we
want our raters to have extensive data analysis experience to
provide a robust measure of visual utility. This design allows
us to maximize the number of variables tested.

In our study, we use three coders who discussed the
coding in depth in a small pilot study to ensure there was
consensus on the utility rating scale and descriptions of the
task. The three coders scored a large (1,200), varied group of
differentially private charts on their visual utility. The charts
were generated using varying differential privacy algorithms,
privacy levels, data distributions, tasks, and bin sizes (see
Section 4.3 for further explanation of variables).

¢ 5 algorithms for adding noise:
[DAWA, AHP, AGrid, Laplace, Geometric Truncated|

« 4 privacy levels e: [0.50,0.10,0.05,0.01]

« 2 bin sizes: [32 x 32,64 x 64]

« 20 data distributions: [0..19], each a canonical scatterplot
from each of Pandey et al.’s categories [47]

« 3 user tasks: [Clusters, Distributions, Correlation], filter-
ing the tasks as appropriate for each data distribution

The second portion of the study analyzes how automated
utility metrics correspond to expert visual utility evaluations.
This design expands upon the framework laid out by Matute
et al. [42]. They first gather the ground truth (human visual
perception) and then compare it to automated statistics
(traditional utility metrics). We found common utility metrics
represented in a variety of domains and found the strength of
correlation with our visual utility evaluations of the different
plots. The goal of this portion of the study is to help data



Distribution: The distribution of points in space for the graph on the right is comparable to the graph on the left,
including the visibility of manifolds and the relative density of each region.
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Fig. 5: Screenshot of study website. Code to generate study
can be found in the supplemental materials.

curators effectively automate the process of visual utility
evaluation.

4.1

To gather the visual utility evaluations for the 1200 charts, a
study website was created (see Fig. 5). The website contained
a page for each parameter combination with forward and
back buttons. The reviewers could see the binned scatterplot
with no noise added on the left and the private binned
scatterplot on the right. The questions were blocked by task
and randomized within tasks to help the reviewers remain
cognizant of the criteria they were evaluating the private plot
on. They evaluated the ability of the private plot to retain
the task completion on a 4-point Likert scale, developed
through discussion and consensus agreement of the coders:
[0: Doesn’t preserve the feature: I have no confidence that the
feature exists. 1: Suggests the feature could exist: It looks like
the feature might exist but I have low confidence and/or the
feature is shown with little clarity. 2: Somewhat preserves
the feature: I'm confident this feature exists but its fidelity is
meaningfully lower than the original plot. 3: Preserves the
feature very well: I'm confident the feature exists and it is
shown with high fidelity relative to the original plot.]

We chose to create four categories since the nuances
between different ratings of a more fine-grained scale would
be difficult to discern. Before the study was run, the three
experts coalesced on the agreed-upon definitions and rank-
ings of utility by discussing a representative sample of
questions. The representative plots were created with all
the same parameters used in the actual study but used data
distributions that were not seen in the actual study. Having
these discussions was critical to ensure there was consensus
on what utility entails and resulted in a high IRR score during
the data collection process.

Procedure

4.2 Inter-Rater Reliability (IRR)

To validate our choice of study design and utility rating
system we ensured that the variability in utility ratings
stemmed from the parameter changes rather than the coders’
perceptions. To do so, we ran a pilot study and calculated
the inter-rater reliability (IRR) to ensure the trained coders
agreed upon the evaluation of the data. We set a-priori
threshold for our IRR at .6 which is classified as substantial
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agreement by Kevin Hallgren [27]. This allows us to attribute
the differences in the scores to the data and not to the users.

To test the inter-rater reliability we follow the guidelines
for choosing the correct intraclass correlation coefficient (ICC)
as set out by Koo and Li [36]. Using their criteria, our ICC
selection corresponds to the two-way mixed effects, absolute
agreement, single rater/measurement—ICC(3,1). For our
pilot study we found an IRR of .7311 with a 95% confidence
interval of [0.68, 0.78]. This was an acceptable score based
on Kevin Hallgren’s recommendations. The IRR for the final
data gathering portion was .831 with a 95% confidence
interval of [0.82, 0.85]. This is well in the recommended
IRR score and is classified as good by Koo and Li [36].

See our preregistration (https://osf.io/25xhn, sec. 1.5.1)
for the pilot analysis & data.

4.3 Manipulated Variables

Differential privacy algorithms have varied performance
based on many factors [29]. We test the performance of each
combination of differential privacy algorithm (Section 4.3.1),
privacy level (¢) (4.3.2), bin size (4.3.3), data distribution
(4.3.4), and user task (4.3.5) to get a precise understanding of
where they perform best.

4.3.1 5 algorithms for adding noise
This categorical variable has values: [DAWA, AHP, AGrid,
Laplace, Geometric Truncated].

We selected algorithms with an open-source implemen-
tation that represent a broad range of best-in-class results.
After examining papers that benchmark popular differential
privacy algorithms and open-source libraries [25], [29], [55],
[70], we settled upon 5 algorithms. Our differential privacy
expert co-author (Prof. Ullman) verified that the selected
algorithms were a relevant and representative sample.

We choose to investigate both data-independent and data-
dependent algorithms, where the primary difference is how
they add noise to the underlying data. Data-independent algo-
rithms add noise without considering the input data, while
data-dependent algorithms add noise based on the structure of
the input [40]. Since the output of data-dependent algorithms
is related to distribution, different algorithms will perform
better on different shapes [29]. This results in no single
algorithm outperforming all others across all types of data
sizes, shapes, and privacy parameters [30], [69]. Therefore,
to find the best algorithms for each set of variables, we test
multiple data-independent and data-dependent algorithms.

We included 2 data-independent algorithms: Laplace and
Geometric Truncated. Both implementations can be found in
the open-source library diffprivlib [32]. We choose to test the
Laplace mechanism as it is (1) the original proposition for
noise addition [13], (2) has proven to be a safe general choice
when adding noise to visualizations [69], and (3) is a good
benchmark to compare other algorithms against [29], [40],
[69]. Our choice of using Geometric Truncated is motivated
by Garrido et al. [25], who benchmarked algorithms available
in open-source differential privacy libraries. Garrido et
al. found that Geometric Truncated [26] from diffprivlib
outperforms other algorithms when adding noise to count
queries. As count queries are the basis of differentially private
scatterplots, we consider Geometric Truncated to be our best-
in-class data independent algorithm.


https://osf.io/59tfv
https://osf.io/25xhn

Original epsilon=0.3 epsilon=0.2 epsilon =0.1

Fig. 6: Small changes in privacy level € can cause large
disproportional changes in graphical representation. A .1
change in € from .3 to .2 and .2 to .1 changes the data privacy
by nearly an equivalent amount. The dropoff in visual utility
is not proportional as the plot with ¢ = 0.1 retains little
visual utility.

In addition to the 2 data-independent algorithms, we
analyze 3 data-dependent algorithms: DAWA [40], AGrid
[48], and AHP [71]. Based on the metrics set out by Hay et al.
[29], DAWA performs the best overall of all the algorithms
and best overall for the small sample sizes. Perhaps more
relevant for this paper, DAWA has also been found effective
for maintaining the visual utility of 1D histograms [69].
AGrid was selected because it often performs well on shapes
that DAWA had difficulty with [29]. Finally, while DAWA
and AGrid are designed for accurately answering range
queries, AHP is a general-purpose algorithm for accurately
creating histograms [37]. We execute all the algorithms with
the default parameters. Our target user is not a differential
privacy expert so we expect them not to have the time
or expertise to accurately tune the additional parameters
outside of e. All three of the algorithms are implemented
in DPComp [11]. At https://osf.io/wejds/ we provide
instructions for using the algorithms with your own data.

4.3.2 4 privacy levels (e)

This quantitative variable has values: [0.50,0.10, 0.05, 0.01].

Tuning € allows the data curator to decide the tradeoff
between accuracy and privacy. Since differential privacy is
a relatively new concept, guidelines for setting € have not
yet been developed [64]. Dwork et al. state that the value of
€ is more of a social question, so therefore we want to give
data curators the ability to see multiple privacy levels [13].
While there are no strict guidelines for setting differential
privacy, differential privacy experts do agree that the value
of € should be below one [15], [64]. Additionally, high ¢ does
not allow for accurate comparisons across algorithms so we
keep e relatively small [15].

To find the levels of ¢ we want to test, we first ran simu-
lations on a variety of datasets at different levels of €. This
practice is standard in differential privacy applications [15].
The levels of € were chosen at levels that often corresponded
visually with the four possible visual utility options: [doesn’t,
suggests, somewhat, does] retain the task. The highest level
of privacy where any utility was retained at a domain size
of 5,000 was € = .01 (Doesn’t). On the other hand, at e = .5,
the private graphs almost always retained their full utility
(Does). To test the nuances of the different algorithms, we also
evaluate them at ¢ = .1 (somewhat) and ¢ = .05 (suggests).
In this way we hope to find the differences in the algorithms
chosen depending on the privacy level.

Dataset Size | 5,000 | 10,000 | 50,000 | 100,000 | 1,000,000
| 01| 005 00l 0005 00005

TABLE 2: All algorithms evaluated are scale-e exchangeable
[29]. For each of the dataset sizes, the corresponding e will
produce the same private plot if all other parameters are kept
consistent. Therefore, our results can be extended to larger
or smaller datasets. To find the corresponding ¢ for another

. . CountOther
dataset size use the formula: ‘Z2"2=22" * €qple-

Original Bins: 32x32 Bins: 64x64 Bins: 128x128

Fig. 7: At the same level of ¢, the utility of the visualization
can worsen if too fine of a bin size is selected (128x128).

One more very important point to note is that each of
the algorithms chosen is scale-¢ exchangeable [29]. What this
means is that increasing the number of records or increasing
the € have an equivalent effect. We can think of the number of
records and e as being inversely proportional so two datasets,
one consisting of 10,000 rows and one consisting of 1,000
rows, of the exact same distribution, will have the same error
at an € of .1 and 1 respectively. This is critical as it allows
our results to be extended to any domain size with a simple
calculation. While this is the case it is not advisable to apply
differential privacy to small datasets [15]. At a certain size,
the noise will either distort the visual pattern too much or
the privacy guarantee will not be sufficient for any practical
circumstance. Looking at Table 1 we can see how our choices
of € for a domain size of 5,000 can be expanded to a variety
of different domain sizes.

4.3.3 2 bin sizes

This quantitative variable has values: [32 x 32,64 x 64]

Bin size can affect the utility of the visualization by both
making the patterns coarser and affecting the perturbation
errors. The same amount of noise will make a smaller
impact on coarser bins than finer bins. Finding the correct
number of bins is a difficult problem even without privacy
constraints [65]. There are a variety of approaches proposed
from previous research to find the optimal binning of dataset
[20], [54]. When adding noise from the differential privacy
algorithms we need to additionally take into account the
impact this will have on the output. A histogram with finer
bins may lead to lower accuracy since the perturbations will
have a larger effect on each bin [66]. Therefore, to select
the appropriate number of bins we took three different
approaches: previous research, algorithmic partitioning, and
visual inspection.

The work by Hay et al. [29] evaluated a variety of
algorithms on 2D histograms and partitioned the data into
32x32, 64,x64, 128x128, and 256x256 bins. Their datasets
contained a million or more records so we focused on the
lower range of bin numbers. We then ran the pilot datasets
through a variety of partitioning algorithms employed by


https://osf.io/wej4s/

the numpy histogram_bin_edges package [28]. The different
partitioning algorithms generally returned bin amounts near
the 32x32 and 64x64 range. We therefore selected to study
both the 32x32 and 64x64 bin amounts since they retained
the nuances of the original data but the visual pattern could
alter depending on the amount of noise added.

4.3.4 20 data Distributions/Scatterplot shapes

This categorical variable has values [0..19], each a canonical
scatterplot from each of Pandey et al.’s categories [47].

Since the shape of the data plays a crucial role in
the utility of the data-dependent algorithms [29], it was
important to select a representative sample of a wide variety
of scatterplots. We chose to avoid synthetic datasets as
those patterns are rarely seen in real-world applications
[47]. Instead, our scatterplots are based on the scatterplot
perceptual groupings presented by Pandey et al. [47]. In their
paper, they narrow down 84,000 scatterplots to a selection
of 247 representative plots which were grouped into 20
categories by human subjects based on visual similarity. Our
study analyzes one scatterplot from each of the 20 categories—
meeting our criteria of a varied, real, and representative
sample of plots.

Many of the datasets used by Pandey et al. are small,
consisting of fewer than 1000 rows. While this is common in
real-world datasets, differential privacy is not designed for
such small datasets [15]. We are not testing whether the algo-
rithms work on these specific datasets, but instead, we aim to
test how well the algorithms preserve the visual patterns these
datasets represent. Therefore, each plot received additional
data points until it reached 5,000 points. 5,000 rows represent
the minimum amount of points where our maximum € of
.5 consistently produces a good visual representation. For
datasets less than 5,000 points, we increase the size of the
datasets preserving the bivariate distribution of the points.
We added synthetic points to each dataset in a systematic
manner using copulas [58], random Laplace jitter, or simply
duplicating points. We chose the most appropriate technique
for each dataset by visually inspecting and comparing the
original and larger datasets points plotted in a scatterplot
and binned scatterplot. Any plot that had more than 5,000
rows, had rows randomly removed until it also contained
5,000 rows. The code to generate the datasets and the
plots generated for visual inspection can be found in the
supplemental materials.

During the data study, the experts saw side-by-side the
binned scatterplot with no noise and one with noise added.
They were asked how well they could complete the assigned
task. We set our color scale for the binned representation
to the standard matplotlib library greyscale [33]. We used
popular plot-generation libraries and a typical unaltered
color scale to try and replicate the process of a data curator
who does not have the time or expertise to go through and
specifically design each graph.

4.3.5 3 user tasks

This categorical variable has values: [Clusters, Distributions,
Correlation], filtering the tasks as appropriate for each data
distribution.

Differential privacy changes the ability of the user to
complete certain tasks more than others [69]. Therefore, we
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assess visual utility based on the user’s ability to complete
certain tasks [67], [69].

When we add differential privacy to the private scatter-
plots, they are meant to do just that; keep the data private.
Therefore, users should not be able to extract any values
about an individual (retrieve value, identify outlier) or else
the whole premise of privacy dissipates. Our study uses tasks
that are difficult to accurately describe numerically through
aggregate statistics but can be quickly discerned by viewing
a scatterplot and do not involve individual data points. This
criteria results in three tasks: identify correlation (including
non-linear), identify clusters, and characterize distribution.

These tasks are extracted from Micallef et al.’s five most
common user tasks for scatterplots [43]. The three experts
went through many pilot questions and discussed each task
until a succinct comprehensive definition was agreed upon:

¢ Distribution: The distribution of points in space for the
non-private graph is comparable to that of the private
graph, including the visibility of manifolds and the
relative density of each region.

o Correlation: The private graph preserves the level of
dependence between the two attributes—including non-
linear dependence.

o Clusters: The clusters visible in the non-private graph—
and no other clusters—are visible on the private graph
and occur in the same places.

Using these agreed-upon definitions and a 4-point coding
scale the experts were able to evaluate the visual utility in
relation to each task.

4.4 Analysis
4.4.1 Parameter/Algorithm Comparisons

The first step in our analysis is creating one ranking from
the three different raters. We use the median of the ratings.
Since the data is ordinal and does not have equally defined
spacing between the four ratings, we do not use the mean
[53].

Next, we test how the different parameters affect the
visual outputs using statistical tests and visual data inspec-
tion. The data is filtered based on the various parameters
(4 privacy levels (¢), two bin sizes, three tasks) tested. The
analysis then follows a three-step process:

1) Using the Friedman test [21], we check whether there
is sufficient evidence to say that there is a difference
between the five different algorithms if the Friedman test
returns a p-value < .05 we continue on step two - the
post-hoc analysis.

2) We conduct a post-hoc Conover [6] test to see which
algorithms differ from each other. This gives us more
specific insight into which algorithms are different from
one another.

3) We visualize the data to examine the results from the post-
hoc Conover test. The post-hoc Conover states if there is
a difference but does not provide direction. Therefore we
use visuals to check the practical significance of our effect
sizes and determine which algorithm retained a higher
utility [12].


https://osf.io/uq3ay

4.4.2 Comparison to Utility Metrics

We want to measure the strength of association between the
visual utility ratings generated by our coders and metrics
of utility that can be generated computationally. Our coder
rankings are ordinal, and the metrics are continuous. When
obtaining the association of ordinal-continuous variables,
it is recommended to use Kendall’s coefficient of rank
correlation 7, range from -1 (perfect negative association)
to 1 (perfect positive association) [35]. To test whether our
different metrics produce different strengths of correlation,
we will use the Fisher z-transformation to see if there is a
meaningful difference between the correlation coefficients.
We then create a rank order of metrics based on the highest
absolute value of correlation coefficient || that has a p-value
of less than .05. The metrics and their explanations can be
found in Table 1.

5 RESULTS

We will first discuss how the different algorithms perform
overall across all parameters and then break down perfor-
mance based on the different levels of each parameter. As
previously found in the literature [29], @ DAWA perform
best of all the algorithms aggregated across all manipulated
variables (¢, bin size, task, distribution, algorithm). Geometric
Truncated also performs well as found in the previous
literature by Zhang et al. [70]. @ Laplace, AGrid, and AHP
generally provide the lowest visual utility.

Of all the parameters, ©® ¢ plays the largest role in
determining the visual utility of the output. At the highest
€ = 0.5, There is meaningful evidence that AHP and
Geometric Truncated perform best (Post-Hoc Conover -
p < .1 compared to other algorithms). While AHP performs
well at higher information reveal (high ¢), its utility quickly
drops off at the lower €’s of 0.05 and 0.01. DAWA consistently
performs well throughout but particularly outperforms the
other algorithms at lower information reveal ( ¢ = .05 and
¢ = .01). @ No algorithm performs well at an € = .01 for
a dataset of 5000 points. Only DAWA produced any charts
with a utility rating that was not 0. Implication: at higher
information reveal (high €) use AHP, Geometric Truncated. At low
information reveal (low €), DAWA is your best bet.

The tasks also play a role in how much utility is retained
when the data is privatized. © Identifying clusters was the
task that best retained its visual utility. This is followed
by correlation and distribution for task completion difficulty.
This may be because cluster tasks do not require seeing
as much fine-grained detail as the other tasks. Algorithm
performance also varied based on task. @ There is evidence
that DAWA meaningfully outperforms the other algorithms
for the correlation task, and AHP, DAWA, and Geometric
Truncated take a three-way tie for the best algorithm for
distribution tasks.

The bin sizes have a smaller effect on the utility than € but
still impact the visual utility rankings. The @ coarser bins
(32x32) better retain the utility (Wilcoxon Signed rank test
with all parameters but bins equal) It is important to keep
in mind that the utility retention was made by comparing
non private binned plots with private binned plots of the
same bin size. For coarser bins, both DAWA or Geometric
Truncated perform reasonably well but at finer bin sizes
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(64x64) DAWA outperforms all the algorithms (Post-Hoc
Conover test p < .1).

Finally, our utility metrics results provide interesting
insights into which automated metrics can be used to best
evaluate visual utility. @ The automated utility metric that
most strongly correlates with visual utility is MS-SSIM
[61]. MS-SSIM provides data curators with the opportunity
to compare any parameter combination against any other
parameter combination. This allows data curators to optimize
across all manipulated variables.

6 DISCUSSION

The results of our study led to many concrete guidelines but
also many observations on how privacy affects the utility
of private plots. In this section, we summarize observations
that will help data curators maximize the visual utility of
their private plots.

6.1

All the parameters that we evaluated (except the task)
influence the way noise is added to the aggregated counts.
This is particularly apparent between the data-independent
and data-dependent algorithms. Data-dependent algorithms
use various clustering strategies to group bins and make
them the same count, creating large areas of uniform color
(see Fig. 4 (left)). The data-independent algorithms add noise
to each bin independently of the adjacent bins, often creating
visualizations with the look of static TV (Fig. 2 Laplace).

By observing these variations in noise, the expert eval-
uators came to several conclusions about their ability to
perceive the true underlying data. For low levels of privacy
(small amounts of noise), the signal-to-noise ratio is often
high and therefore it is easier to differentiate between what
is noise and what is the underlying data. Additionally, the
large areas of uniform count that data-dependent algorithms
generate can be easily classified as noise and ignored. This
is compounded if the user is familiar with the algorithm, as
the private outputs show similar patterns of noise addition
for the same algorithm. Other algorithms, such as Laplace,
can create negative bin counts, which a data user can ignore
since a binned scatterplot should never have a count less
than 0. Finally, a prior understanding of the data has a large
influence. Our experts saw the original data alongside the
private data and commented that there were times they were
not sure if they would have seen the patterns in the private
data if they were not aware of them beforehand. Therefore a
data user with a stronger prior belief in what the data shape
will be can likely better confirm their beliefs and see the
signal past the noise than a user completely unfamiliar with
the data.

These observations may explain why DAWA and the
cluster task had the highest visual utility ratings. DAWA
often has large areas of uniform count (Fig. 2 Fig. 4), and
as stated previously, this type of noise may help reduce
the obfuscation of the real data by the noise. For clusters,
the noise often does not overshadow the strong signal that
represents a dense area of points. Therefore, it is easier to
complete this task than (for instance) distribution, where
subtle patterns are often lost.

Signal to Noise
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Laplace 0 0.2 0.617
Geometric 0 0.367

DAWA 0.067 0.583

Algorithm

AHP 0 0.267

AGrid 0 0.317

Variable AIC  AIC Diff

e 2995.98 1187.84

chart_7 1911.79 103.65

bins 1899.46 91.32

chart_17 1878.10 69.96
algorithm_DAWA 1847.75 39.61
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that there is very strong
evidence that visual utility
is better with 32x32 bins.
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We use Kendal's Coefficient
of Rank (t) to measure
ordinal association. It can be
interpreted largely in the
same way as r2. The closer
to -1 or 1, the better the
predictor the metric is of
visual utility. The automated
utility metric that most
strongly correlates with
human perception of visual
utility is MS-SSIM.

Association with
Automated Metrics

®

T p-val.

MS-SSIM  0.62  0.00

Random Query -0.50 0.00

Earth Movers Distance -0.47  0.00
KSTest 0.20 0.00

Scagnostics  -0.09  0.00

Fig. 8: The figure displaying the results presented in Section 5. The figure displays A) overall algorithm performance, B)
Post-hoc Conover comparison of all algorithms, C) the most impactful variable, €’s, affect on visual utility, D) task related
performance of the algorithms, E), bin size affect on utility, and F) ranking of automated utility metrics.
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Fig. 9: The stacked bar chart consists of cumulative percents
of the raters scores aggregated across all algorithms. Chart 4
(green, top) had the highest mean utility score while chart 17
(red, bottom) had the lowest mean utility scores.

6.2 Epsilon’s Influence

While we tested many parameters, it is apparent from
the analysis that by in large the change in utility results
from changes in €, with the other parameters providing
small variations. One strategy that data curators can use
to increase their maximum ¢, is relaxing the e constraint
by using the popular method of (¢, §) differential privacy
outlined by Dwork et al. [16]. While "pure" differential
privacy gaurantees that the maximum privacy loss is € on all
possible queries, the § relaxation allows us to increase € by
instead guaranteeing the privacy loss does not exceed € with
probability at most 1 — ¢ (pure would be a probability of 1).

Even small changes in the € can make a drastic difference
in the visual utility of the private plot. This is particularly true
for several of the data-dependent algorithms (Fig. 6 shows
the data-dependent algorithm AHP). For several algorithms,
namely AHP, there is a clear dropoff point where the private
plots greater than a certain € retain some utility and smaller
than that € retain almost no utility (Fig. 8 C). On the other
hand, the data-independent algorithms and DAWA have a
more proportional drop in utility as privacy increases. For
the algorithms that have sudden drop-offs in utility, data
curators can run automated checks using the MS-SSIM metric
to find the lower bounds of ¢ that retain the visualization’s
utility.

6.3 Data Distribution

The distribution of the data plays a role in the utility and
efficacy of differential privacy and the algorithm selected.
In their comparison of various algorithms on different data
distributions, Hay et al. [29] discuss how certain algorithms,
particularly data dependent algorithms, perform better on
different distributions. They state that no algorithm performs
best on all data distributions and sizes. Our findings agree
with this statement but we also find that certain data
distributions have lower visual utility across all algorithms
(Fig. 9). In a sense, the data distribution has less of an effect
within the algorithms but certain data distributions are likely
to lose more of their utility across all algorithms.

We also investigated which graphs had the highest and
lowest scores. Charts with large areas of uniform density
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performed poorly (Charts 17 and 7) while charts with narrow,
"stringy" distributions (Charts 4 and 2) performed best
(Fig. 9).

This finding could stem from the processes and assump-
tions data-dependent algorithms make. Essentially, data-
dependent algorithms look for dense regions in the data.
The basic premise of the data-dependent algorithm is to
partition the data into groups where the signal is similar and
then make those regions uniform (We can see these regions
as the uniform colors in Fig. 2 DAWA). Therefore, when there
is clear dense regions, the data-dependent algorithms easily
group those bins together and keep them visually distinct as
the counts represent opposite ends of the color scale. On the
other hand, when the data distribution is more uniform, the
data-dependent algorithms highlight and produce regions
that are similar in count but still represent opposite ends
of the color scale since the color scale range has changed.
Therefore the difference in color for dense regions (Fig. 9 top)
for some graphs may look the same as the difference in color
of a uniform regions (Fig. 9 bottom) creating the illusion that
there is greater variation between certain regions then there
really is.

6.4 Visual Post Processing

In addition to the parameter optimization before the output
is created, data curators can vary the visual parameters
in the output to better highlight the signal amongst the
noise. Researchers in the medical field have looked at this
particularly with MRI images [45]. Thaker et al. [56] briefly
mention the potential effectiveness of doing this when
hiding the noise in private scatterplots. Previous literature
corroborates this insight and has stressed the importance
of selecting an appropriate color scale for the data being
presented [5]. We advise the data curator to examine how
different color scales and binning of the color scale may
influence the visual perception of the data.

6.5 Utility Metrics

Automatic utility metrics should make it easier for data
curators to decide which parameters will offer the greatest
visual utility. The utility can change based on all of the
parameters as evidenced by Fig. 2, Fig. 7, Fig. 10 even
when € remains the same. Without a way to quickly and
statsitically check for visual utility retention, the creation
of optimal private plots can be difficult or time consuming.
Our work helps remove this barrier by benchmarking the
best automated metric for visual utility. From our findings
we found that MS-SSIM [61], was the best way to predict
visual utility of a private plot. MS-SSIM can be used to help
optimize bin size, ensure visual utility does not drop-off at
certain €’s (Fig. 6), or to visually post process the plot (Fig. 10).
While not all automated metrics are tested, we hypothesize
that the area of image similarity may be a good place to look
for even more accurate visual utility metrics.

Another result that may seem intuitive but has broad
implications is that algorithms deliberately optimize one
metric. Having an algorithm optimize utility for one metric
may not correspond to optimal utility performance on a
different metric (APQE does not translate well to visual
utility — Fig. 4). This is evident as Geometric Truncated



performed well when evaluated on visual utility but often
performed the worst on the APQE metric. Since algorithms
are designed to work best on a certain metric they are
evaluated on, it would be interesting for future work to try
and design an algorithm that is evaluated on visual pattern
retention (visual utility) as the metric.

7 FUTURE WORK

This work does a deep investigation of many parameters
on one type of chart but we only scratch the surface of
the intersection of visualization and differential privacy.
Narrowing the scope to scatterplots was important to provide
actionable insights and validate our methodology for finding
automated utility metrics. Future work could expand upon
our study in several ways. Many more parameters could be
tested using our top automated utility metric MS-SSIM. The
study methodology can be altered to increase the amount of
plots and parameters by having the plots utility evaluated
algorithmically instead of by human coders. The parameter
choices could be extended and more data distributions added
to better understand the nuances in how data distributions
and privacy levels affect the visual utility of scatterplots.
Futhermore, now that our methodology is established and
verified, future work could examine other visualization types
using the same process. For instance, future work could find
automated utility metrics to evaluate private line charts
[23] visual utility. Finally, by investigating other chart types,
we can verify if our results extend to other visualization
types. Since private scatterplots are 2D histograms, the results
may be particularly transferable to 1D histograms. In their
algorithm benchmarking study, Hay et el. [29] find similar
results to ours stating that DAWA was the top algorithm for
1D histograms.

Additionally, our methodology for finding automated
utility metrics for private scatterplots could be extended in
several ways. First, more ground truth data gathered on a
variety of data distributions would increase the validity of
the correlations with the automated utility metrics. Second,
a finer grain of utility scores could be generated to help
differentiate subtler differences between the private plots.
Third, more metrics could be run with the existing data
to see if they outperform the others. Future work could
also encompass creating an original computational metric
or using machine learning to train an algorithm to predict
whether an outputted private visualizations retains it’s utility.

Other aspects of our study design could also be adjusted
to extend and validate our results. First, this study could
be extended to a user study with many participants. A
qualitative portion would also bring in new insights into
how participants and data users interact with private data
visually. The structure of the questions examining utility can
be adjusted to potentially better reflect the type of questions
a data analyst would ask of the data. For example, instead of
asking the raters to give a score of utility, study participants
could be asked to examine both the original and private
data and pull out key insights in an open ended format.
This study could also be redone with the same parameters
but with algorithm optimization. Previous work has found
drastic improvements in performance if the parameters of
the algorithm are optimized [29]. One algorithm in particular,

12

AGrid, could be improved as it produced an artifact that we
choose to ignore when evaluating our visual utility metrics.
All these adjustments and variations demonstrate how under-
explored this area is.

An extension of our work could also be creating an
automated pipeline based off of the results to recommend
chart parameters. As an example, a researcher could input
a CSV of their data and tune the parameters of the chart to
create a scatterplot that they think best displays their data
(Fig. 10 Original Graph). After inputting the primary task
they hope to retain the utiltiy of, the system could guide them
in selecting the best algorithm and e based off of our studies
results (Fig. 8 C, D, Fig. 10 Educated Parameter Choices). This
system could also optimize parameters using the MS-SSIM
metric. For instance, as show in Fig. 10 Bin Optimization
and Color Scale Optimization, parameters can quickly be
optimized computationally reducing the time consuming
activity of visual inspection. This kind of system could
lead data curators to make clear and informed parameter
decisions or help produce private plots if the dataset has
many attributes.

Another area of research with many potential avenues
is using visualizations to help explain differential privacy.
This could overlap with many of the concepts found in
explainable Artificial Intelligence (explainable Al) literature
[31]. Both differential privacy and machine learning have
complicated algorithms where it is hard for practitioners to
understand the underlying mechanisms [1]. Input param-
eters can be tuned in both to create more optimal outputs
[68]. Finally user trust and understanding play a pivotal
role. Additionally, while we tested algorithms that take
in either one or two variables and output private results,
there is a growing field of research related to synthetic
differentially private data generation [3] that privatizes multi-
attribute datasets. These techniques employ machine learning
to learn the patterns of a dataset and output synthetic
data that mimics these patterns. Visualization can be of
particular use in examining the outputted synthetic data to
ensure the quality and information contained in the original
dataset remains the same. Future work could therefore
look at explainable differential privacy and see if the same
methodology and systems that are effective in explaining
artificial intelligence can be translated to assist and explain
private data generation.

Another under-explored area is interactive private data
analysis. This runs in parallel to a burgeoning area of research
in differential privacy referred to as adaptive differential
privacy [63]. When a user is provided access to a differentially
private database, they are often given a privacy budget.
The privacy budget is the total allowable € to be used. In
differential privacy, e compounds additively with each new
query on the same database (with a budget of .5, a data user
could view two plots at an € of .25). Therefore, user’s of of an
interactive visual analysis tool would have to balance their
accuracy against number of queries/visualizations. Design-
ing a system to investigate user’s trust and understanding
of this kind of decision making process would provide
valuable insights into creating an interactive, exploratory
private visual analysis system.
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Fig. 10: We manually generate charts showing how our results can be used to to create an optimal differentially private
scatterplot. This process could be converted into a recommendation system in future work to help data curators generate

private plots.

8 CONCLUSION

In our paper we take a critical and thorough look at the many
parameters that a data curator would have to sift through
when choosing to release sensitive data using differential
privacy and scatterplots. This study provides guidance to
data curators about which algorithm is best when trying to
retain the visual utility of a private binned scatterplot.

We also comment on how the other parameters affect
the utility. The privacy parameter, ¢, has by far the largest
impact on a private plots visual utility. Finally, we benchmark
automated utility metrics against our ground truth data
and demonstrate how the most strongly correlated metric,
MS-SSIM, can be used to optimize certain parameters.
Data curators, users, and future researchers can benefit by
better understanding how parameter decisions influence
differentially private scatterplots and can build on this
knowledge to further explore the intersection of data privacy
and visualization.
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