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The Multi-Armed Bandit Problem

Core Properties of MAB:

1.Sequentially taking actions of unknown quality

2.Feedback only involves information on selected action

3.Regret: gap of cumulative rewards between the optimal arm and the

algorithm
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Adversarial Bandits: No assumptions on the rewards
Stochastic Bandits: Rewards subject to identical and independent
distribution



MAB in Multi-Agent Systems

Each agent solves an instance O — ® Agents
of MAB problem and share \ /
observations with others .\

Homogeneous Agents — synchronized actions and non feedback

constraints
Heterogeneous Agents (new in our work) - agents are assigned
different action rates and constraints in feedback collection
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Clinics have different access to the feedback of suggested
treatment plans.




An Example to Show Drawbacks of Traditional Algotf

Reward agents | Action
{1,2} .V o {2} mean rate

3 0.6 C 0.5

- Arms are associated with Bernoulli rewards

- Agent b only takes action at the first slot

- With probability 0.6, the observed reward forarm 3is 1

- There are only one observation, so other agents will select arm 3

constantly



Performance Degradation with Slow Agents

Strategies UCB Elimination e-greedy
-based
Influenced by
slow agents Yes Yes Yes

Reasons that traditional algorithms suffer poor performance:
1. Fail to guarantee enough observations
2. Selection rules ignore the impact of action rate



A Two-Stage Cooperative Algorithm: AAE-LCB

Core ldeas:
1. Pull local arms as much as possible (first stage)

- Use AAE to eliminate local arms, switch to select external arms
only when an external arm dominates all local arms

2. Avoid selecting external arms with low-confidence estimates
- Select the external arm with the largest lower confidence bound
(LCB is large only if the arm is well-observed)



Theoretical Results

Regret by AAE-LCB: Regret by Cooperative UCB:
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K - number of arms

1™ - the optimal arm

®; - aggregate action rate of agents containing arm i

® - aggregate action rate of all agents

A; - gap of reward means between the optimal arm and arm {



Numerical Results

- 20 agents (10 fast and 10 slow) é (R e
- 100 arms, randomly allocated 2025 -« CO-UCB
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UCB Speed Ratio: Fast vs Slow Agents

AAE-LCB outperforms others with different ratios of action rate
between fast and slow agents
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