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Abstract—By employing local renewable energy sources and
power generation units while connected to the central grid,
microgrid can usher in great benefits in terms of cost effi-
ciency, power reliability, and environmental awareness. Eco-
nomic dispatching is a central problem in microgrid operation,
which aims at effectively scheduling various energy sources
to minimize the operating cost while satisfying the electricity
demand. Designing intelligent economic dispatching strategies
for microgrids, however, is drastically different from that for
conventional central grids, due to two unique challenges. First,
the demand and renewable generation uncertainty emphasizes
the need for online algorithms. Second, the widely-adopted peak-
based pricing scheme brings out the need for new peak-aware
strategy design. In this paper, we tackle these critical challenges
and devise peak-aware online economic dispatching algorithms.
We prove that our deterministic and randomized algorithms
achieve the best possible competitive ratios 2−β and e/(e−1+β)
in the fast responding generator scenario, where β ∈ [0, 1] is
the ratio between the minimum grid spot price and the local-
generation price. By extensive empirical evaluations using real-
world traces, we show that our online algorithms achieve near
offline-optimal performance. In a representative scenario, our
algorithm achieves 17.5% and 9.24% cost reduction as compared
to the case without local generation units and the case using
peak-oblivious algorithms, respectively.

Index Terms—Microgrids, Online Algorithm, Peak-Aware
Scheduling, Economic Dispatching.

NOTATIONS

This section lists the main notations used in this paper.
e(t) The net electricity demand at time t in KWh.
u(t) The amount of energy generated by local generators

at time t in KWh.
v(t) The amount of energy purchased from electricity grid

at time t in KWh.
pe(t) The spot price of the electricity from grid at time t

in $/KWh.
pmin
e Minimum spot price of the electricity from grid,

mint pe(t).
pg The unit cost of the electricity by local generators in

$/KWh.
β Ratio between pmin

e and pg .
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pm The peak demand price of the electricity from grid
in $/KWh.

Ru The maximum ramping up rate of local generator.
Rd The maximum ramping down rate of local generator.
C Local generator capacity.
T Number of time slots in one charging period.
T Set of time slots in one charing period,

{1, 2, · · · , T}.
Z+ The set of nonnegative integer numbers.

I. INTRODUCTION

M ICROGRID represents a promising paradigm of future
electric power systems that autonomously coordinate

distributed renewable energy source (e.g., solar PVs), local
generation unit (e.g., gas generators), and the external grid
to satisfy time-varying energy demand of a local community.
As compared to traditional grids, microgrid has recognized
advantages in cost efficiency, environmental awareness, and
power reliability. Consequently, worldwide installed microgrid
capacity has witnessed a phenomenon growth, reaching 866
MW in 2014, and is expected to reach 4,100 MW by 2020 [1].

Energy generation scheduling in microgrid determines the
power output level of local energy sources and power to be
procured from external grid, with the goal of minimizing the
total cost over a pre-determined billing cycle. The scheduling
plan should meet the time-varying energy demand and respect
physical constraints of the generation units. Such problems
have been studied extensively in the power system literature
for traditional grids. Two main variants are unit commit-
ment [2] and economic dispatching [3] problems. The unit
commitment problem typically optimizes the start-up and the
shut-down schedule of power generation units, whereas the
economic dispatching problem optimally schedules the output
levels given the on/off status as the input parameters. In this
paper, we focus on economic dispatching problem in microgrid
scenarios.

At first glance, economic dispatching in microgrid may
appear to be a small-scale version of the classical urban-wide
economic dispatching problem. However, the following two
unprecedented challenges make the problem fundamentally
different, thereby the previous solutions inapplicable.
B Demand and renewable generation uncertainty in

microgrid. Classical scheduling strategies for main grid rely
on accurate prediction of future demand and dispatchable
central generation [3]. However, without aggregation effect,
the small-scale demand of microgrid is highly uncertain.
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Meanwhile, the penetration of uncontrollable and intermit-
tent renewable sources introduce uncertainty into generation
scheduling. These observations motivate us to investigate new
online scheduling strategies that do not rely on accurate
prediction of future demand and renewable generation [4], [5].

B Peak-based charging model of the external grid. The
real-world pricing scheme for consumers with large loads
(such as universities or data centers) adopts a hybrid time-of-
use and peak-based charging model where the electricity bill
consists of both the total energy usage and the peak demand
drawn over the billing cycle. The motivation is to encourage
large customers to smooth their demand, thereby the utility
provider can reduce its planned capacity obligations. The peak
price is often more than 100 times higher than the maximum
(on-peak) spot price, e.g., 118 times for PG&E [6], and 227
times for Duke Energy Kentucky [7] 1. Consequently, the
contribution of peak charge in the electricity bill for a typical
costumer can be considerable, e.g., from 20% to 80% for
several Google data centers [8]. These observations suggest
that economic dispatching strategies with peak cost taken into
account (referred to as peak-aware economic dispatching) may
substantially reduce the total operating costs for microgrids as
compared to economic dispatching strategies oblivious to peak
cost (referred to as peak-oblivious economic dispatching). This
is indeed the case as verified by our real-world trace-driven
evaluation in Sec. IV.

Most of the previous researches on microgrid economic
dispatching, that we are aware of and review in Sec. V, either
adopt a peak-oblivious cost model, wherein the costumer bill
is computed by total energy usage following a time-of-use
pricing scheme, or rely on an accurate prediction of demand or
renewable generation. In this paper, we tackle the peak-aware
economic dispatching problem for microgrids by designing
competitive online algorithms that do not rely on prediction
of future input. Our main contributions are summarized as
follows:

B We identify and formulate the peak-aware economic
dispatching problem of minimizing the operating cost for mi-
crogrids under the hybrid time-of-use and peak-based pricing
scheme in Sec. II. Notably, two aforementioned challenges
change the structure of the problem fundamentally and call
for online algorithm design.

B In Sec. III, we focus on “fast-responding” generator
scenario, where the ramping constraints (i.e., the maximum
change in output level over successive steps) of local gener-
ators are ignored. We follow a divide-and-conquer approach
and decompose the problem into multiple sub-problems, solve
the sub-problems by their “rent-or-buy” nature, and then
combine the solutions to obtain a solution for the original prob-
lem. We then demonstrate that the competitive ratios of our
algorithms are (2− β) and e/ (e− 1 + β) for deterministic
and randomized versions respectively, where β ∈ [0, 1] is the
ratio between the minimum grid spot price and the generator
price. We prove that the ratios are the best possible. As such,
these results characterize the fundamental price of uncertainty

1In practice, the unit of peak price is $/KW while the unit of spot price is
$/KWh. This estimation is obtained by assuming the peak demand lasts one
hour.

for the problem. The results in this part will help to solve the
problem in “slow-responding” generator scenario [9].
B In Sec. IV, by extensive evaluations using real-world

traces, we show that our online algorithms can achieve satis-
factory empirical performance. Furthermore, our peak-aware
online algorithms achieve near offline-optimal performance,
and outperform the peak-oblivious designs under various set-
tings. The substantial cost reduction shows the benefit and
necessity of designing peak-aware strategies for economic
dispatching in microgrids.

Some preliminary results in this paper were presented at
ACM e-Energy 2015 [10] and all proofs are in the appendices.

II. PROBLEM FORMULATION

In the microgrid economic dispatching problem, the objec-
tive is to orchestrate various energy sources to minimize the
operating cost while satisfying the electricity demand.

We consider one billing cycle, which is a finite time horizon
set T = {1, . . . , T} with T discrete time slots of uniform
length. In practice, the duration of one cycle is usually one
month and the length of each time slot is 15 minutes [6]. In
this paper, we quantize the electricity supply and demand to
take only nonnegative integer values; this will simplify our
presentation later on. Note that the quantization step can be
arbitrarily small to achieve arbitrary granularity level.

Net electricity demand. Let e(t) be the net electricity de-
mand in time slot t, i.e., the total electricity demand subtracted
by the renewable generation. Note that since the renewable
energy generation is in general very difficult to predict, we do
not assume any specific stochastic model of e(t), the pattern
of which can be arbitrary.

Local generation. There are local generators deployed in
the microgrid with total generation capacity C, i.e., they can
jointly satisfy at most C amount of electricity demand for
each time slot. 2. We consider a practical setting where the
generator’s incremental power output in two consecutive slots
is limited by the ramping-up and ramping-down constraints
Ru and Rd, respectively. Most microgrids today employ small-
capacity generators that are powered by gas turbines or diesel
engines. These generators are “fast-responding” in the sense
that they have large ramping-up/-down rates. Meanwhile, there
are also “slow-responding” generators with small ramping-
up/-down rates. We denote pg as the cost of generating unit
electricity using local generators.

Electricity from the external grid. The microgrid can also
obtain electricity supply from the external grid for unbalanced
electricity demand in an on-demand manner. We denote the
spot price at time t from the external grid as pe(t). We assume
that pe(t) ≥ pmin

e ≥ 0 3. we do not assume any stochastic
model of pe(t). For ease of discussion later, we define β ,

2Conventionally a generator’s capacity is measured in KW, we consider a
discrete time setting, under which the generator’s capacity is computed by its
actual capacity in KW multiplied by the length of slot in hour. For example,
for a generator with actual capacity C = 10KW and the length of slot is 0.25
hour, its capacity is 2.5KWh.

3We remark that the electricity spot price can sometime be negative in
practice [11]. We restrict our attention to the case with pe(t) ≥ 0 in this
study and leave the general case with negative price to future work.
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pmin
e /pg as the ratio between the minimum grid price and the

unit cost of local generation.
Cost model. The microgrid operating cost in T includes the

expense of purchasing electricity from the external grid and
that of local generation. Let v(t) be the amount of electricity
purchased from the external grid and u(t) be the amount of
electricity generated locally.

The cost of grid electricity consists of volume charge and
peak charge. The volume charge is simply the sum of volume
cost in all the time slots, i.e.,

∑
t pe(t)v(t). In practice, the

peak charge is based on the maximum single-slot power and
the peak price unit is $/KW [6], which is different from the
spot price unit $/KWh. Let the peak price in $/KW be p̃m and
the length of one time slot be δ (e.g., 0.25 hour), we convert
the peak price to $/KWh as pm = p̃m/δ. Consequently, the
peak charge is pm maxt v(t), i.e., the peak demand over the
billing cycle (in KWh) multiplied by pm (in $/KWh). This
method is similar to the one used in [8]. We remark that pm
is usually more than 100 times larger than pe(t) [6].

For local generation, the cost of a generator to generate θ
amount of electricity is commonly modeled as a quadratic
function [2], i.e., say, aθ2 + bθ + c. The coefficient a is
usually orders of magnitude smaller than b (e.g., for a typical
oil generator with capacity 15MW, a = 0.007, b = 48.5)
4. Consequently, for small-capacity generators employed in
microgrids, the quadratic term aθ2 is usually much smaller
than the linear term bθ and is negligible. In this paper, we
consider the homogeneous local generators and denote pg as
the unit generation cost. The total local generation cost is
simply

∑
t pgu(t).

Putting together all the components, the microgird total
operating cost over a billing cycle is given by

Cost(u,v) =
∑
t∈T

pe(t)v(t) + pm max
t∈T

v(t)︸ ︷︷ ︸
by external grid

+
∑
t∈T

pgu(t)︸ ︷︷ ︸
by local generators

.

(1)
Existing microgrid generation scheduling schemes [4], [5]

did not consider the peak charge term pm maxt v(t); we refer
to these schemes as Peak-Oblivious. In this paper, we consider
the Peak-Aware Economic Dispatching (PAED) problem as
follows,

PAED min
u,v

Cost(u,v)

s.t. u(t) + v(t) ≥ e(t), t ∈ T , (2a)
u(t) ≤ C, t ∈ T , (2b)
u(t+ 1)− u(t) ≤ Ru, t ∈ T , (2c)
u(t)− u(t+ 1) ≤ Rd, t ∈ T , (2d)

var. u(t), v(t) ∈ Z+, t ∈ T .

The constraint in (2a) ensures that the electricity demand is
satisfied. The constraint in (2b) is due to the generator capacity
limitation. The constraints in (2c)-(2d) reflect the ramping
up/down constraints respectively.

4This can be further verified by more examples from
http://pscal.ece.gatech.edu/archive/testsys/generators.html.

In the offline setting where the net demand in the entire
time horizon, i.e., e(t) for all t in T , is given (by for example
accurate prediction), problem PAED can be solved easily us-
ing dynamic programming. If we consider continuous supply,
the optimization problem is convex. However, the net demand
e(t) in microgrid is hard to predict as it inherits substantial
uncertainty. This motivates the need of online strategies that
do not rely on net demand prediction to operate [5].

In this paper, we use competitive ratio (CR) as the metric
to evaluate how good an online algorithm is. For an online
algorithm A, its competitive ratio is defined as the maximum
ratio between the cost it incurs and the offline optimal cost
over all inputs, i.e.,

CR(A) , max
all inputs

Cost incurred by A
Offline optimal cost

.

Clearly we have CR ≥ 1. It is desired to design online
algorithms with small competitive ratios, since it guarantees
that, for any input, the cost of the online algorithm is close to
the offline optimal.

III. FAST-RESPONDING GENERATOR CASE

In this section, we relax the ramping constraints (2c)-(2d)
and consider the fast-responding generator scenario. Most
generators employed in microgrids can ramp up/down very
fast. For example, a diesel-based engine can ramp up/down
40% of its capacity per minute [12]. Considering the time scale
of each slot (e.g., 15 minutes), those generators can be thought
as having no ramping constraints. That is, Ru = Rd = C.
We note that even though we relax the ramping constraints,
the relaxed problem, denoted as FS-PAED, still covers many
practical scenarios in microgrids [5]. Moreover, the results in
this section serves a building block for designing online algo-
rithm for the original problem PAED with ramping constraints,
which is presented in our technical report [9].

In the following, we focus on the scenario where the unit
cost of local generators is always higher than that of external
grid, i.e., pe(t) ≤ pg . If pe(t) > pg , it is always optimal to use
the local generator as much as possible (u(t) = max{e(t), C})
for both online and offline algorithms. The demands in such
time slots will incur equal costs for the online and offline
algorithms and decrease the ratio between them. Thus ignoring
such demands will not change the competitive analysis of the
online algorithms. As a result, we can have pmin

e ≤ pg and
β ≤ 1.

We will first consider a special version of problem
FS-PAED, named as FS-PAEDk, where the net demand only
takes value 0 or 1. We design optimal online algorithms for
problem FS-PAEDk and then extend the algorithms to solve
the general problem FS-PAED.

A. Problem FS-PAEDk and An Optimal Offline Solution

We now consider a special version of problem FS-PAED
as follows:

FS-PAEDk : min Cost(uk,vk)

s.t. uk(t) + vk(t) ≥ ek(t), t ∈ T ,
var. uk(t), vk(t) ∈ {0, 1}, t ∈ T ,
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where ek(t) only takes value 0 or 1. To keep the problem
interesting, we assume the capacity C to be larger than 1;
thus the capacity constraint is inactive and removed.

Note that problem FS-PAEDk can be solved by dynamic
programming, which however does not seem to bring sig-
nificant insights for developing online algorithms. As such,
in what follows, we study the offline optimal solution from
another angle to reveal a useful structure, which we exploit to
design efficient online algorithms.

Under the setting, the unit cost of local generation is
more expensive than the spot price of the external grid, i.e.,
pe(t) ≤ pg . However, the expensive local generation can
be leveraged to cut off the peak demand satisfied by the
external grid and thus the prohibited peak charge from the
external grid. Thus, the key in solving problem FS-PAEDk

lies in balancing between the cost of using the expensive local
generation and the peak charge of using the external grid. It
turns out the optimal offline solution, as shown in Lemma 1,
is developed by comparing the accumulated deficit of using
the local generation and the unit peak charge.

Lemma 1: An optimal offline solution of FS-PAEDk,
denoted by

{((
uk(t)

)∗
,
(
vk(t)

)∗)}
T

, only takes value 0 and

1 and is given by
(
uk(t)

)∗
= ek(k)−

(
vk(t)

)∗
and

• if σ > 1, then
(
vk(t)

)∗
= ek(t), for all t in T ,

• otherwise
(
vk(t)

)∗
= 0, for all t in T .

Here σ is a critical peak-demand threshold defined by

σ ,
1

pm

[∑
t∈T

(pg − pe(t)) ek(t)

]
. (3)

Remark: The optimal solution constructed in Lemma 1 is
computed given that the critical peak-demand threshold σ is
determined. Meanwhile, σ can only be computed in the offline
setting where the net demand in the entire horizon is given, and
it turns out it is the sufficient statistics of the net demand for
characterizing the ratio between the cost of an online algorithm
and the offline optimal cost.

B. Online Algorithms for Problem FS-PAEDk

The challenge for the online algorithm comes from the fact
that it cannot determine the value of critical peak-demand
threshold σ ahead of time. This brings out a dilemma in online
decision making: to suffer deficit of local generator and bypass
the peak charge or to pay for the peak and enjoy cheaper
electricity from the grid. The most aggressive strategy acquires
electricity from the grid from the very beginning, while the
most conservative strategy uses local generation to satisfy all
the net demands in the entire horizon, to avoid the peak charge.

An important observation in online decision making for
problem FS-PAEDk is that after purchasing electricity from
the grid once, meaning the peak charge has already been paid
(and will not be charged again during the current billing cycle),
the microgrid should continue to use the cheap electricity from
the grid until the end of the billing cycle. Then the key decision
is to determine when to start to pay the peak-charge premium
and buy electricity from the grid.

To pursue online algorithms with minimum competitive
ratio, it turns out that it suffices to focus on online algorithms
that switch from local generation to grid electricity procure-
ment when the accumulated local generation deficit exceeds
some threshold, say s · pm, where s ∈ [0,∞) is an algorithm-
specific parameter.

For deterministic algorithms, these are the ones switching
to grid electricity procurement at time τ that satisfies the
following condition for the first time in the entire horizon:

τ∑
t=1

(pg − pe(t)) ek(t) ≥ s · pm.

The most aggressive strategy discussed above corresponds to
s = 0, and the most conservative one corresponds to s =∞.
Randomized online algorithms can be then characterized by
probability distributions of s.

1) An Optimal Deterministic Online Algorithm: The de-
terministic online algorithm we design is to set s = 1, which
means that we will purchase electricity from the grid when the
accumulated local generation deficit seen so far just equals the
peak charge. We name this algorithm as Break-Even Economic
Dispatching for problem FS-PAEDk (BED-k). We provide its
performance guarantee in the following theorem.

Theorem 1: The competitive ratio of BED-k is given by

CR (BED−k) = 2− β,

and no other deterministic online algorithm can achieve a
smaller competitive ratio. 5

2) An Optimal Randomized Online Algorithm: We can
design a randomized online by randomly picking a value
of s and start to purchase electricity from the grid when∑
τ (pg − pe(τ)) ≥ s · pm. The core of the randomized

algorithm design is by which distribution we generate s. It
is easy to imagine that different probability distributions will
lead to algorithms with different competitive ratios.

The probability distribution we choose is

f∗(s) =


es

e−1+β , when s ∈ [0, 1];
β

e−1+β δ(0), when s =∞;

0, otherwise.

(4)

We name this randomized algorithm as Randomized Economic
Dispatching for problem FS-PAEDk (RED-k). Its competitive
ratio can be computed by solving

max
σ

Expected online cost
Optimal offline cost

,

Theorem 2: With the distribution given by f∗(s) in (4), the
competitive ratio of RED-k is given by

CR (RED−k) =
e

e− 1 + β
,

and no other randomized online algorithm can achieve a
smaller competitive ratio.

Remark: (i) In the deterministic online algorithm, setting
s = 1 means that the microgrid will start to buy electricity

5Recall that β , pmin
e /pg is the ratio between the minimum grid price

and the unit cost of local generation
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Fig. 1. An example of decomposing the demand into multiple layers and a
microscopic view of layer 3

from the grid until the break-even condition is met. Similar to
the ski rental problem [13], the break-even point turns out to be
the best balance between being aggressive and conservative.
(ii) The vigilant readers may notice that f∗(s) is the same
distribution that was adopted in solving the classic Bahncard
problem [14], which is indeed similar to problem FS-PAEDk

we study in this section. The basic version of FS-PAEDk,
however, is different from Bahncard problem in the sense that
the discounted price (pe(t) in this paper) is time varying.

C. From Problem FS-PAEDk to Problem FS-PAED
In this section, we design deterministic and randomized

online algorithms for FS-PAED based on those of FS-PAEDk.
1) Net Demand Layering: Recall that e(t) is assumed to

take non-negative integer values. We divide the demand e(t)
into multiple layers such that the demand of each layer in each
time slot is either 1 or 0, as shown in Fig. 1.

After layering, a bunch of sub-problems FS-PAEDk are
obtained, which can be solved by the online algorithms BED-
k or RED-k. However, unlike FS-PAEDk, the net demand
of FS-PAED in some time slots can exceed the capacity
of local generation, which makes it infeasible to ignore the
whole picture while conquering each layer independently. For
example, suppose the generation capacity is 4 for the case
shown in Fig. 1. Even though the break-even points are not
reached for all the layers in time slot 2, it is infeasible to set
uk(2) = 1 for all the layers (A capacity of 5 is needed to
do so). Thus by taking into account the capacity constraint,
we need to determine for which layers the demand should
be satisfied by the grid while still keeping the algorithm
competitive.

An obvious but critical observation is that the demands in
the lower layers are denser than those in the upper layers.
In addition, after being charged for the peak, we expect
more demands to come to enjoy the cheap grid electricity.
Consequently, it is always more economic to use the grid
electricity to satisfy the denser demands, i.e., the lower layers.
In other words, in the proper algorithm design, the layers
below (e(t) − C)+ should always be satisfied by the grid.
Meanwhile, for the layers above (e(t) − C)+, if the demand
is already satisfied by the grid, the online algorithm continues
to acquire the electricity from the grid; otherwise, Algorithm
BED-k or RED-k is applied with the same value s for all lay-
ers to obtain the sub-solutions. The solution is finally obtained
by combining the sub-solutions. We summarize the resulting

deterministic and randomized online algorithms, named as
BED and RED, in Algorithm 1 and 2, respectively.

Algorithm 1 BED: Optimal deterministic online algorithm for
FS-PAED
Require: C,pm,pg ,pe(t),e(t),ς0 = 0
Ensure: u(t),v(t)

1: while τ ∈ T do
2: A threshold: ςτ = max{ςτ−1, (e(τ)− C)+}.
3: For the layers below ςτ , vk(τ) = 1, uk(τ) = 0
4: For the layers above ςτ , run BED-k to obtain uk(τ)

and vk(τ).
5: u(τ) =

∑
k u

k(τ), v(τ) =
∑
k v

k(τ)
6: τ = τ + 1
7: end while

Algorithm 2 RED: Optimal randomized online algorithm for
FS-PAED
Require: C,pm,pg ,pe(t),e(t),ς0 = 0
Ensure: u(t),v(t)

1: while τ ∈ T do
2: A threshold: ςτ = max{ςτ−1, (e(τ)− C)+}.
3: For the layers below ςτ , vk(τ) = 1, uk(τ) = 0
4: For the layers above ςτ , run RED-k with the same

randomized parameter s to obtain uk(τ) and vk(τ).
5: u(τ) =

∑
k u

k(τ), v(τ) =
∑
k v

k(τ)
6: τ = τ + 1
7: end while

We show a toy example solved by BED to demonstrate
idea of layering approach in Fig. 2. In the example, we
consider a 9-slot horizon with demand in each slot being
1, 5, 3, 2, 4, 2, 1, 2, 3, respectively. The local capacity is 4,
pg = 5, pe(t) = 2, and pm = 8. For the subproblem in each
layer, the peak charge will be compensated by the cheaper
grid electricity if the total demand in that layer is larger
than 2. Given all inputs, the optimal offline solution uses
only the grid for the subproblems with total demand larger
than 2 (layer 1, 2 and 3) and uses only the local generators
otherwise (layer 4 and 5). The optimal offline cost is calculated
to be 79. For the online solution derived by BED, it uses
the local generator for the first two nonzero demands because∑τ
t=1(pg − pe(t)) < pm for τ = 1, 2 and switch to the grid

when extra demands come because
∑τ
t=1(pg − pe(t)) > pm

for τ ≥ 3. It should also be noted that, in slot 2, the total
demand exceeds the total capacity, thus we have to use the
grid to satisfy that unit demand in the first layer. We use
different colors to demonstrate by which source and for what
reason each unit demand is satisfied in Fig. 2. By back-of-
the-envelop calculation, the online cost is 94, and the ratio
between the online cost and offline optimal cost is 1.19 for
this particular example.

Even though the example is simple, it demonstrates two
important and provable properties of BED: (i) For each layer,
it will continue to use the grid after it uses it once, and (ii)
when one layer uses the grid, all the layers below it use the grid
too. The first property makes the solution and cost structure
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Fig. 2. Demonstration of BED with C = 4, different colors denoting different
strategies of the algorithm.

similar to that of BED-k, while the second property makes
the peak of v(t) equal to the sum of the peaks of vk(t),
i.e., maxt

∑
k v

k(t) =
∑
k maxt v

k(t). The two properties
allow us to leverage the results in Sec. III-B to establish the
competitive ratios of BED and RED in Theorem 3.

Theorem 3: The competitive ratios of BED and RED are
given by

CR (BED) = 2− β, and CR (RED) =
e

e− 1 + β
.

Further, no other deterministic and randomized online algo-
rithm can achieve smaller competitive ratios.

In the next subsection, we discuss an intriguing impact of lo-
cal generation capacity on the online algorithms’ performance.

D. Critical Local Generation Capacity

The peak-aware economic dispatching aims at minimizing
the sum of the peak charge (the term pm maxt∈T v(t) in (1))
and the volume charge (as the remaining part in (1)). The
local generator provides the microgrid an option to use more
expensive electricity (increase the volume charge) to reduce
the peak (decrease the peak charge). An optimal solution is
achieved with the best tradeoff between the two. Given an
input, there is a threshold C̃, the demand below which should
be satisfied by the grid and above which by the local generator.
C̃ can be obtained by solving FS-PAED in an offline fashion
without considering capacity constraint. It means that the
optimal offline solution will not use the additional capacity
even if it is larger than C̃.

We now discuss the impact of increasing local generation
capacity C on the performance of offline and online algo-
rithms. The offline algorithm will use full local capacity until
C reaches C̃, and it will not use local capacity further beyond
C̃. As such, one can expect that the operating cost of the offline
algorithm is non-increasing as C increases. Meanwhile, the
online algorithm, without knowing C̃ and with the tendency
of reducing the peak with more expensive electricity, will try
to exploit the whole capacity until it finds the break-even point,
which turns out to be less economic and deviates more from
the optimal solution. As a result, for the online algorithm,
larger capacity may incur higher operating cost. We provide a
concrete case-study by real world traces to confirm the above
observation in Sec. IV.

Overall, we believe the above insights are important for
microgrid operators to (a) determine the amount of local
generation to invest in order to maximize the economic ben-
efit, and (b) understand the importance of demand/generation
prediction when performing peak-aware economic dispatching
in microgrids.

IV. EXPERIMENTAL RESULTS

We carry out numerical experiments using real-world traces
to scrutinize the performance of our online algorithms under
various practical settings. Our purpose is to investigate (i) the
competitiveness of our online algorithms in comparison with
the optimal offline one, (ii) the necessity of peak-awareness in
economic dispatching of microgrids, and (iii) the performance
of online algorithms under various parameter settings. More
simulation results can be found in [9].

A. Experimental Setup

Electricity demand and renewable generation traces. We
set the length of one billing circle as one month. We use the
actual electricity demand of a college in San Francisco; its
yearly demand is about 154GWh [15]. We inject renewable
energy supply sources by a wind power trace of a nearby
offshore wind station outside San Francisco with a total
installed capacity of 12MW [16]. We then construct the net
demand by subtracting the output level of the wind from the
college electricity demand.

Energy source parameters. The electricity price pe(t) and
peak price pm are set based on the tariffs from PG&E [6]
and pm = 17.56$/KWh while the electricity rate pe(t) varies
from 0.056$/KWh to 0.232$/KWh for off-, mid-, and on-
peak periods in different seasons. We set the unit cost of local
generation pg according to the monthly price of natural gas.
Notably, the value of pg could be less than pe(t) for some
on-peak intervals. In such situations, generator plays its role
not only by cutting off the peak but also by providing cheaper
electricity as well. Finally, if not specified, the capacity of the
local generator is set to be C = 15MWh, which is around
60% of the peak net demand.

Cost benchmark. We use the cost incurred by only procur-
ing electricity from the external grid, i.e., v(t) = e(t), as
the benchmark. We demonstrate cost reduction to show the
benefit of employing local generation units and the merits of
our algorithms. The cost reduction originates from the cheaper
electricity (in some on-peak intervals) and peak cut-off by
local generators.

Comparison of algorithms. We compare our proposed
peak-aware online economic dispatching algorithms BED
and RED with (i) the optimal peak-aware offline solution
(PA-OFFLINE) to evaluate the performance of the online
algorithms, and (ii) the peak-oblivious online algorithms
(PO-Online) in [5] to investigate the importance of peak-
awareness.6 We remark that both schemes in [4], [5] are peak-
oblivious as they only consider volume charge but ignore peak
charge.

6We remark that in [5], the joint unit commitment and economic dispatching
problem in peak-oblivious manner is addressed and in this paper we compare
the economic dispatching part with our algorithms.
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B. Benefits of Employing Local Generators

Purpose. The purpose of this experiment is two-fold. First,
compare the potential savings of microgrid in different sea-
sons, in which the demand pattern, the wind output, and the
cost parameters differ. Second, compare the cost reduction
of peak-aware algorithms against peak-oblivious ones. The
results are shown in Fig. 3.

Observations. The most notable observations from Fig. 3
are the following. First of all, the cost reduction varies over
seasons and the most significant one occurs in the summer.
This is because the gas price is lower and the grid electricity
price is higher in the summer than those of the other seasons,
thus employing local generators brings more benefit. Second,
the performance of our proposed BED is superior than PO-
Online algorithm. In particular, PO-Online cannot reduce the
cost in the winter, but our algorithm BED can still achieve
cost reduction. The reason is that, as pg > pe(t) always
holds in the winter, PO-Online algorithm always purchases
cheaper electricity from the gird, which gives no cost reduction
as compare to the benchmark strategy. In contrast, our BED
algorithm reduces the cost by exploiting (the expensive) local
generation to reduce the peak demand served by the external
grid, and consequently our algorithm can save operating cost.
On average, BED reduces the annual cost by 17.49%, while
PO-Online reduces the cost only by 9.08%. Third, the per-
formance of BED in practice is close to that of the offline
optimal.

C. Benefit of Prediction

Purpose. For the online algorithm design, predicting the
future is believed to be an effective mechanism to improve the
performance [17] and many prediction algorithm are proposed
[18], [19]. For the problem in this paper, the prediction will
help us to notice the break-even point earlier and thus bring
benefit. In this part, we evaluate how helpful prediction is
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peak price on a small microgrid testbed

by changing the looking-ahead window ∆ from 0 to 24 time
slots (two days). We also compare its performance with that of
receding horizon control [20] algorithm (RHC) under different
∆ and the results are shown in Fig 4.

Observation. As we can observe, the looking-ahead win-
dow will increase the performance of RHC significantly, but
for our online algorithm BED, the cost reduction is not
increased so much, only from 17.49% to 18.23%. This result
indicates that predicting the near future contributes little to the
overall performance. The underlying logic is as follows, the
difference between the online solution with prediction and that
without prediction only happens during the period (looking-
ahead window) before the ‘break-even point’, the length of
which is much smaller than that of the whole billing cycle. In
other words, the prediction will not change the online solutions
too much, thus the performance will almost remain the same.
The good news is that, the performance of RED is close to
optimal and the property of being insensitive to prediction
will not make it less attractive compared with other design,
like RHC.

D. The Performance of BED under Different Local Genera-
tion Capacities

Purpose. At first glance, one may imagine that larger local
generator leads to larger design space and thus larger cost
reduction is expected. However, as discussed in Sec. III-D,
this is not the case for online algorithms that do not have the
complete future knowledge of price and demand. We carry
out an experiment to verify and elaborate the observation. For
convenience, we define ρ = C/max e(t) as the ratio of local
generation capacity over the peak net demand and change
ρ from 20% to 100%. The result is shown in Fig. 5. The
experiment in this part is carried out with the data from July
(one billing cycle).

Observations. The results for PA-OFFLINE and PO-
Online algorithms follow the intuition that more local capacity
brings more cost reduction. For BED, however, we observe
that the cost reduction increases when ρ increases from 20%
to 60%, and decreases as ρ continues to increase from 60%
to 100%. As we discussed in Sec. III-D, there exists a critical
local generation capacity C̃ beyond which the peak charge
and the overall cost will not decrease further. In Fig. 6, we
report the peak grid demand max v(t) in one month versus ρ
just for PA-OFFLINE algorithm. Results show that the peak
value of v(t) does not decrease as ρ increases from 60% to
100%, evincing that C̃ is about 60% of the maximum demand
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in this case. As discussed in Sec. III-D, C̃ can be computed
by solving problem FS-PAED in an offline manner.

However, the online algorithm, without knowing C̃ and
with the tendency of reducing the peak charge by using more
expensive local generation, will try to exploit the entire local
generation capacity until the cost-benefit break-even point is
reached, which turns out to be less economic and deviate from
the offline optimal. As a result, for the online algorithm, larger
capacity may incur higher operating cost, as shown in Fig. 5.

This experiment, together with the discussions in Sec. III-D,
show that it is important for the microgrid operator to set
the local generation capacity right at C̃ to cope with online
algorithms to achieve maximum cost reduction. A possible
way to set C̃ is to use the historical data as the input to the
offline algorithm and obtain the critical capacity.

E. The Performance of RED

Purpose. In this part, we compare the empirical perfor-
mance of the deterministic online algorithm BED and random-
ized online algorithm RED under different local capacities.
The cost of RED is computed by running the algorithm 1000
times and taking the average.

Observations. Even though RED is better than BED in
terms of competitive ratio, it is not always the case empirically
because the competitive ratio only characterizes the perfor-
mance in the worst case. As we can see, when ρ is less than
80%, BED outperforms RED while the other way around if
ρ is larger than 80%. Furthermore, when ρ increases from
80% to 100%, the performance of BED degrades drastically,
while the cost reduction of RED almost remains the same.
This observation indicates that, to ensure that BED has good
performance, we need to carefully determine the local capacity
but additional local capacity will not harm RED much, which
can be viewed as another advantage of RED.

F. Empirical Evaluations Using Traces from a Real-world
Small-scale Microgrid

Purpose. In this simulation, we replace the previous trace
with a new one, which is from a test-bed building at College
of Engineering Center for Environmental Research and Tech-
nology of UC Riverside and spans three months from May to
July. The building has 20 office rooms, 2 conference rooms,
one large open area with cubicles, and 7 other miscellaneous
rooms. The building HVAC system consists of 16 packaged
rooftop units. In addition to its small scale, the building is
connected to solar PV and several charging stations, both of
which introduce additional demand uncertainties. As a result,
the demand fluctuates more than the previous data set we use.
The simulation result is shown in Fig 8.

Observations. On this new data set, the cost reduction
is more significant (at least 40% for the offline case) than
the previous results and will increase with larger peak price
pm. This result indicates that peak-aware scheduling is more
beneficial with more fluctuating demand and larger peak
prices.

V. RELATED WORK

Microgrid is attracting substantial attention from both aca-
demic and industrial communities due to its economic and
environmental benefits, evidenced by a number of real-world
pilot microgrid projects [21].

With the penetration of renewable energy in microgrids,
conventional economic dispatching approaches based on accu-
rate demand prediction for power grid [3] are not applicable
as the local demand is highly uncertain and is hard to predict
accurately. Online convex optimization [4] and Lyapunov
optimization [22] are popular approaches to design online
algorithms in face of uncertainty of future demand. In recent
years, competitive online algorithm design is advocated by
researchers to design online algorithms with strong worst-case
performance guarantee for power system operation. Examples
include the microgrid unit commitment and economic dis-
patching algorithm under the volume charging model [5], EV
charing algorithm [23], dynamic provisioning of data centers
[24], etc.

The peak-based charging model has been considered in
the cost minimization problem for data centers in [8], [25]
and for content delivery network in [26]. In the microgrid
scenario, distributed energy storage scheduling [27], demand
response [28]–[30], HVAC controlling for buildings [31], and
climate control for storage systems [32] are also studied with
peak-charging taken into consideration, assuming prediction
of future input with certain level accuracy. In contrast, we
design competitive online algorithms that does not rely on
prediction of future input and achieves strong worst-case
performance guarantee. We summarize the main differences
between existing literatures and our work in Table I.

The special case FS-PAEDk of the economic dispatching
problem in this paper can be considered as a generalization
of the classic Bahncard problem [14], in the sense that the
‘discounted price’ is time-varying. The Bahncard problem
and its solutions have also found application in the instance
acquisition problem of cloud computing [35].

VI. DISCUSSION AND FUTURE WORK

In this paper, we devised online economic dispatching
algorithms for microgrids, with peak charging model taken
into account. We developed both deterministic and random-
ized online algorithms with best possible competitive ratios
following a divide-and-conquer approach. In addition to sound
theoretical performance guarantees, the empirical evaluations
based on real-world traces also corroborated our claim on the
importance of peak-awareness in scheduling and the merit of
our algorithms.

Demand response and energy storage management can be
used to effectively “shave the peak” of the demand so that the
peak-charging can be reduced. Our work and algorithm are
orthogonal to demand response and energy storage manage-
ment, in the sense that we focus on orchestrating the local and
external supply to further cut short the peak-charging. Thus
one can apply demand response, energy storage management,
and our algorithm to reduce the peak-charging by optimizing
both the demand and supply.
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TABLE I
Comparisons between most related literature on microgrid economic dispatching and peak-charging aware operations in power system.

Reference Topic Energy supply and storage
components

Considering peak (demand)
charge?

Relying on
prediction?

With performance
guarantee?

[32] Climate control Grid Yes Yes No
[29] Demand response Grid and battery Yes Yes No
[30] Economic dispatching Grid, local generator and battery Yes Yes No
[31] HVAC control Grid Yes Yes No
[33] Economic dispatching Grid, local generator and battery No Yes No
[5] Economic dispatching Grid and local generator No No Yes
[34] Economic dispatching Grid and battery No No Yes

This work Economic dispatching Grid and local generator Yes No Yes

An interesting future direction is to study the microgrid eco-
nomic dispatching problem under accurate or noisy prediction
of future demand and renewable generation, and characterize
the averaged performances with respect to different stochastic
patterns. Furthermore, it also deserves effort to extend the
results in this paper to the scenarios with heterogeneous local
generators and to the settings considering demand response
and energy storage systems.
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APPENDIX

A. A Proposition to Prove Theorem 1 and 2

To facilitate our analysis, we provide Proposition 1 to
characterizes the ratio between the online cost and the offline
optimal cost with respect to different s and σ. Recall that
different s and σ characterize different online algorithms and
inputs.

Proposition 1: The ratio between the cost of a deterministic
online algorithm with parameter s and the offline optimal cost,
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denoted by h (As, σ), is given by:
when σ ≤ 1,

h (As, σ) =

{
1, if s > σ,

1 + 1−σ+s
σ (1− β), otherwise;

(5)

when σ > 1,

h (As, σ) =

{
1 + (σ−1)(1−β)

(σ−1)β+1 , if s > σ,

1 + s(1−β)
(σ−1)β+1 , otherwise.

(6)

Proof: We denote the number of time slots with demand
1 by T , and the number of time slot using the local generator
according to the online algorithm by T s. The following
relations are used in the derivation.

σpm =

T∑
t=1

(pg − pe(t)) ≤ T (pg − pmin
e ) (7a)

T s∑
t=1

(pg − pe(t)) ≤ spm (7b)

We compute the ratios in the following different cases.
B Case 1: σ ≤ 1. The optimal offline solution is always

using the local generator and the cost is Costoff = Tpg .
Case 1.1: s > σ. In this case, the online algorithm will

not turn to the grid before the input ends. Therefore, the online
cost is exactly the same as the offline cost, thereby the ratio
is 1.

Case 1.2: s ≤ σ. It turns out that there is a critical time
slot T s that for all 1 ≤ t ≤ T s, the online algorithm uses the
local generator and for time slots T s < t ≤ T , it turns to the
grid, thereby we have Coston = T spg +

∑t=T
t=T s+1 pe(t) + pm.

Hence, we get the following ratio:

R(s, z) =
T spg +

∑t=T
t=T s+1 pe(t) + pm

Tpg

= 1 +

∑T s

t=1(pg − pe(t))−
∑t=T
t=1 (pg − pe(t)) + pm

Tpg
(E1)

≤ 1 + (1− σ + s)
pm
Tpg

,

(E2)

≤ 1 +
1− σ + s

σ

pg − pmin
e

pg

= 1 +
1− z + s

z
(1− β)

Inequality (E1) is due to (7a), (7b) and (E2) is due to the
fact that zpm =

∑
(pg − pe(t)) ≤ T (pg − pmin

e ).
B Case 2: σ > 1. The optimal offline solution is al-

ways acquiring the electricity from the grid and the cost is
Costoff =

∑T
t=1 pe(t) + pm.

Case 2.1: s > σ, In this case, the online algorithm
always uses the local generator and thus the online cost is

Coston = Tpg . Hence, the ratio is as follows:

R(s, z) =
Tpg∑T

t=1 pe(t) + pm

=

∑T
t=1 pe(t) + pm +

∑T
t=1(pg − pe(t))− pm∑T

t=1 pe(t) + pm
(E3)

≤ 1 +
(σ − 1)pm
Tpmin

e + pm

= 1 +
(σ − 1)

pmin
e

T
pm

+ 1

(E4)

≤ 1 +
(σ − 1)

pmin
e

σ
pg−pmin

e
+ 1

(E5)
= 1 +

(σ − 1)(1− β)

(σ − 1)β + 1

Inequality (E3) is by pe(t) ≥ pmin
e and σpm =

∑T
t=1(pg−

pe(t)); (E4) is by T
pm
≥ σ

pg−pmin
e

, which comes from (7a); we

have the last equality (E5) by substituting β =
pmin
e

pg
.

Case 2.2: s ≤ σ. Like case 1.2 here we have T ≥ T s.
Therefore, the online algorithm uses the local generator for the
first T s time slots and turns to the grid afterwards. In this case,
the online cost is Coston = T spg +

∑t=T
t=T s+1 pe(t) + pm, and

the ratio is

R(z, s) =
T spg +

∑t=T
t=T s+1 pe(t) + pm∑T

t=1 pe(t) + pm

= 1 +

∑T s

t=1(pg − pe(t))∑T
t=1 pe(t) + pm

(E6)

≤ 1 +
spm

Tpmin
e + pm

(E7)

≤ 1 +
s

pmin
e

σ
pg−pmin

e
+ 1

(E8)
= 1 +

s(1− β)

(σ − 1)β + 1

Inequality (E6) is by pe(t) ≥ pmin
e and (7b); (E7) is by

T
pm
≥ σ

pg−pmin
e

, which comes from (7a); (E8) is obtained by

substituting β =
pmin
e

pg
.

The proof is completed.

B. Proof of Theorem 1

Proof: The best deterministic online algorithm with
smallest CR can be obtained by solving

min
s

max
σ

h (As, σ) . (8)

The problem is non-convex and thus challenging on the first
sight. However, given a deterministic online algorithm As, it
turns out the worst cost ratio is obtained when σ = s, in which
case the online algorithm pays for the peak-charge premium
but there is no net demand to serve anymore. This can also be
obtained by studying the property of h (As, σ). Thus we have

max
σ

h (As, σ) = h (As, s) =

{
1 + 1

s (1− β), if s ≤ 1,

1 + s(1−β)
(s−1)β+1 , otherwise.
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Fig. 9. Competitive ratio of As as a function of s, with β = 0.3.

Leveraging this observation, the problem in (8) can be solved
easily by studying the extreme points of the two functions

To visualize how the competitive ratio varies as s changes,
we plot the competitive ratio for different values of s in Fig. 9
for the case where β = 0.3.

C. Proof of Theorem 2
Proof: Recall that

f∗(s) =


es

e−1+β , when s ∈ [0, 1];
β

e−1+β δ(0), when s =∞;

0, otherwise.

When σ ≤ 1,∫
s

h(s, σ)f∗(s)ds =

∫ σ

0

(1 +
1− σ + s

σ
(1− β))

es

e− 1 + β
ds

+

∫ 1

σ

es

e− 1 + β
ds+

β

e− 1 + β

=
β

e− 1 + β
+

∫ 1

0

es

e− 1 + β
ds

+

∫ σ

0

1− σ + s

σ
(1− β)

es

e− 1 + β
ds

= 1 +

∫ σ

0

1− σ + s

σ
(1− β)

es

e− 1 + β
ds

= 1 +
1− β

e− 1 + β

=
e

e− 1 + β

When σ > 1,

∫
s

h(s, σ)f∗(s)ds =

∫ 1

0

(1 +
1− σ + s

σ
(1− β))

es

e− 1 + β
ds

+

∫ σ

1

es

e− 1 + β
ds

+ (1 +
(σ − 1)(1− β)

(σ − 1)β + 1
)

β

e− 1 + β

= 1 +
1

e− 1 + β

1− β
(σ − 1)β + 1

(1 + (σ − 1)β)

= 1 +
1− β

e− 1 + β

=
e

e− 1 + β

We observe that the value of
∫
s
h(s, σ)f∗(s)ds has nothing

to do with σ, then

max
σ

∫
s

h(s, σ)f∗(s)ds =
e

e− 1 + β
.

Next we will provide Lemma 2 to prove that no other
randomized online algorithm can achieve a smaller competitive
ratio.

Lemma 2: For any randomized online algorithm Af for
problem FS-PAEDk, we have

CR (Af ) ≥ e

e− 1 + β
.

Proof: The idea is to choose a randomized input, denoted
by g(σ), and compute the ratio between the online cost and
offline optimal cost by the best deterministic online algorithm
for this input. Yao’s Principle [36] says that the computed ratio
is a lower bound for any randomized online algorithm. The
particular distribution we use is given by

g∗(σ) =

{
e

e−1+βσe
−σ, when σ ∈ [0, 1],

e
e−1+β [(σ − 1)β + 1]e−σ, otherwise.

(9)

When s ≤ 1,∫
σ

h(s, σ)g∗(σ)dσ =

∫ s

0

g∗(σ)dσ +

∫ 1

s

(1 +
(1− σ)s

z
)g∗(σ)dσ

+

∫ + inf

1

(1 +
s(1− β)

(σ − 1)β + 1
)g∗(σ)dσ

= 1 +
e(1− β)

e− 1 + β
·[∫ 1

s

(1− σ + s)e−σdz +

∫ + inf

1

se−σdσ

]

= 1 +
e(1− β)

e− 1 + β
e−1

=
e

e− 1 + β

When s > 1,∫
σ

h(s, σ)g∗(σ)dσ =

∫ 1

0

g∗(σ)dσ

+

∫ s

1

(1 +
(σ − 1)(1− β)

(σ − 1)β + 1
)g∗(σ)dσ

+

∫ + inf

s

(1 +
s(1− β)

(σ − 1)β + 1
)g∗(σ)dσ

= 1 +
e(1− β)

e− 1 + β
·[∫ s

1

(σ − 1)e−σdσ +

∫ + inf

s

se−σdσ

]

= 1 +
e(1− β)

e− 1 + β
e−1

=
e

e− 1 + β

Similarly, the value of
∫
σ
h(s, σ)g∗(σ)dσ has nothing to do

with s, then

min
s

[∫
σ

h(s, σ)g∗(σ)dσ

]
=

e

e− 1 + β
.
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Then we can establish Lemma 2 and the proof for Theo-
rem 2 is completed.

D. Proof of Theorem 3
Proof: Firstly, if some energy demands of the input

exceed the capacity constraints, we can construct a new input
by sequently removing the demand exceeding the capacity and
the following demands in the same layer (like the first layer
from time slot 2 in Fig 2). Then compared with the original
input, the online cost and offline cost are reduced by the same
amount, which will lead to a larger competitive ratio. Then
we only need to focus on the input whose demand is always
smaller than the capacity.

Furthermore, due to the two properties of the algorithm
described in the paragraph before Theorem 3, we can have

maxt
∑
k v

k(t) =
∑
k maxt v

k(t), and

{
u(t) =

∑
k u

k(t)

v(t) =
∑
k v

k(t)
.

Then Cost(u,v) =
∑
k Cost(uk,vk). This property still

holds for the offline cost. We denote r̃ as the competitive ratio
for each layer, meaning

Cost(uk,vk) ≤ r̃Costkoff,∀k.
Then by summing the above inequality over k, we can have

Cost(u,v) ≤ r̃Costoff.

For BED, r̃ = 2 − β and for RED, r̃ = e
e−1+β for

the randomized case, which establish the upper bound of the
competitive ratios.

Furthermore, note that FS-PAEDk is a special case of
FS-PAED. Since we cannot obtain smaller competitive ratios
for FS-PAEDk, we cannot obtain smaller competitive ratios
for FS-PAED.

The proof for Theorem 3 is completed.
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