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The QoS (Quality of Service) buffer management problem, with significant and diverse computer applications,

e.g., in online cloud resource allocation problems, is a classic online admission control problem in the presence

of resource constraints. In its basic setting, packets with different values according to their QoS requirements,

arrive in online fashion to a switching node with limited buffer size. Then, the switch needs to make an

immediate decision to either admit or reject the incoming packet based on the value of the packet and its

buffer availability. The objective is to maximize the cumulative profit of the admitted packets, while respecting

the buffer constraint. Even though the QoS buffer management problem was proposed more than a decade

ago, no optimal online solution has been proposed in the literature. This paper contributes to this problem

by proposing: 1) A fixed threshold-based online algorithm with smaller competitive ratio than the existing

results; 2) an optimal deterministic online algorithm under fractional admission model in which a packet could

be admitted partially; and 3) an optimal randomized online algorithm for the general problem. We consider

the last result being the main contribution of this paper.
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1 INTRODUCTION
QoS buffer management with multiple packet values is a classic online problem in computer

networks, with practical significance [1, 6, 20]. The classic example is the DiffServ (differentiated

service) networks, in which packets with different QoS requirements are associated with different

quantized values, which characterize the profit earned by switches if the packets are successfully

delivered. When the network is congested, the switches are not able to admit all arriving packets

due to limited buffer capacity. Hence, to maximize its profit, the switch must decide to admit

packets with higher values. Despite its classic application, the QoS buffer management problem

could be considered as a general admission control problem in several state-of-the-art applications.

As an example, we stress the value-based cloud resource allocation with limited computation
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capacities [3, 30], in which the online jobs with different valuations must be either admitted or

rejected upon their arrival based on their values and the utilization of the cloud servers.

In offline scenario in which the arrival and departure of packets are known in advance, the

QoS buffer management is simple and can be solved using a linear program. However, in a real

network environment many unpredictable factors impact the profile of arriving packets, hence,

offline algorithms are not practical. Thus, the main research effort has been focused on online

settings in which the arrival and departure profile of packets are not known in advance. The existing

algorithms usually follow the well-known competitive analysis framework [10] that tries to achieve

a bounded performance as compared to the offline optimum without relying on future information.

The first study onQoS buffermanagement withmultiple values appeared as early as in 2000 [1, 20].

The work was motivated by rising trends of differentiated services in networks. The early study

was rapidly augmented by proposals of various problem settings [4, 7, 11, 14, 16, 17, 21, 22, 24, 26].

These problem settings can be roughly categorized according to the operation rules on the buffer

or queue into the FIFO preemptive model and the non-preemptive model. In the FIFO preemptive

model, packets which have been buffered in the queue are served in a FIFO manner, and can be

discarded. In the non-preemptive model, the admitted packets cannot be ejected. There are also

many interesting works investigating extensions of the FIFO preemptive or non-preemptive model.

For example, in [11], the authors further take into account the heterogeneous packet processing

time for different traffic. In [14, 16, 17], the authors address a model which involves a departure

deadline for each transferred packet. In [7, 22, 26], the basic model is extended to the multiple input

queues. In Section 2, the details of existing results in the literature is discussed.

1.1 Our Results and Adopted Techniques
This paper focuses on the non-preemptive QoS buffer management problem in online setting. All

the proposed algorithms have a common structure which set a threshold value to either admit

or reject the packets. We refer to these algorithms as threshold-based online algorithms. In the

followings, we summarize the main results and the conceptual framework of our solution design.

▷ In Section 4, we study a simplified problem that assumes no packets departure, i.e., the admitted

packets stay at the buffer permanently. For the simplified problem which theoretically is quite

similar to online knapsack problem [8, 9], we design an algorithm to adopt a fixed threshold value

for every state of the queue length of the buffer. An arriving packet is admitted only when its

value is above or equal to the corresponding threshold. By optimizing the threshold values, we

ultimately achieve a closed-form competitive ratio, which is proved to be the optimal among all

deterministic online algorithms. While using several tailored techniques suitable for the rest of the

paper, our results match to the state-of-the-art result for online knapsack problem [8]. Subsequently,

we extend the threshold-based strategy of the simplified problem to the original problem, with

packet departure. By optimizing the threshold values, we achieve an online algorithm that attains a

better competitive ratio than the existing works [1, 6, 20] and hence is of interest by itself.

▷ In Section 5, our goal is to propose a randomized online algorithm with the optimal competitive

ratio. Toward this, in Section 5.1, we first relax the assumption of the discrete packet admission,

i.e., either admit or reject the packet. In the relaxed model, the switching node can admit a fraction

of the packet and in turn receive the reward proportionally. Then, we propose a novel strategy that

builds a set of virtual sub-queues with unit capacity for each departed packet. By defining virtual

sub-queues, we can track the history of packet departure, facilitating to potentially improve the

competitiveness of the online algorithm.

By leveraging the idea of sub-queue construction, we then propose an algorithm that maintains a

state vector consisting of the queue length of each sub-queue and associates each virtual sub-queue

with a threshold-based admission strategy, a scaled version of the one proposed in Section 4. Then,
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the admitted portion of the arriving packet will be properly allocated among sub-queues in a

water-filling manner. The analysis shows that the proposed algorithm achieves a competitive ratio

of

[
1 + (lnθ + 1) θD

]
· (lnθ + 1), where θ is the packet value fluctuation ratio and D is a parameter

that determines the granularity of the fractional model. With sufficiently large D, the competitive

ratio approximates the known lower bound of lnθ + 1 for deterministic online algorithms [5].

Different from the Selective Barrier policy in [5] (with competitive ratio of O (ln2 θ ) + lnθ + 2 for

small θ ) and [6] (with competitive ratio of e×⌈lnθ⌉), which set a fixed threshold value only based on
the state of queue length, the proposed algorithm adopts an independent threshold-based admission

strategy for each virtual sub-queue, which corresponds to one unit of buffering budget.

▷ In Section 5.2, we propose a randomized rounding approach to extend the result of the fractional

admission model to the original discrete model. First, we prove that the optimal competitive ratio

of any randomized online algorithm for the discrete case is lower bounded by lnθ + 1, which is

also the tight lower bound of the online algorithms for the fractional admission model as well. This

result shows that the randomization will not “outperform” the optimal online algorithm for the

fractional admission model. Based on this observation, it is natural to seek a randomized scheme

to keep the expected queue length equal to that of the fractional case. Our proposed randomized

algorithm achieves the same competitive ratio as the optimal online algorithm for the fractional

case, meeting the optimal lower bound, lnθ + 1, thereby it is the optimal online algorithm. The

main endeavor is to properly design the admission probabilities based on the actions taken by the

optimal online algorithm for the fractional admission model.

The rest of the paper is organized as follows. Section 2 reviews the literature. In Section 3, we

introduce details on the problem formulation as well as the notation used in this paper. In Sections 4

and 5, we introduce the deterministic and randomized online algorithms respectively. Concluding

remarks are provided in Section 6.

2 RELATEDWORK
2.1 FIFO Preemptive Model
The paper [20] deals with a preemptive single-queue model where the admitted packets can be

discarded. The authors study a class of greedy algorithms which discard packets with the lowest

value when an overflow occurs. Then, competitive ratio of the greedy algorithm is analyzed.

Following [20], many other papers aimed to find better algorithms with lower competitive ratios.

Generally speaking, the state-of-the-art result on the competitive ratio for a preemptive model is

1.732 [15], yet no optimal solution has been proposed. For a special case with only two different

packet values, [15] introduces a deterministic strategy and proves that this strategy achieves an

optimal competitive ratio of 1.282. In addition to the single-queue model, [7] and [22] study QoS

buffer management within multiple queues, achieving a competitive ratio smaller than 2 for a

special case where only two packet values are involved. For other work on preemptive buffer

management, readers can refer to [4, 21, 24, 25], as well as the survey paper [19].

2.2 Non-Preemptive Model
For non-preemptive buffer management, The authors in [1] provided the first study of a two-value

model. In their problem setting, packets are tagged as either being a high priority packet or a low

priority packet. Specifically, they assign a benefit of α ≥ 1 to every high priority packet and a benefit

of 1 to every low priority packet. Then, a general lower bound of (2α − 1)/α for the two-value

setting is proved. Then, [6] proposes an algorithm that can achieve the above lower bound for the

competitive ratio. The two-value setting can be characterized as a special case of a general buffer

management problem where packets are allowed to take arbitrary value in a particular region
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[m,M]. This generalization makes the algorithm design far more challenging. In [5], the authors

prove that the optimal competitive ratio for deterministic online algorithms is lower bounded by

lnθ + 1, where θ = M/m is the ratio between the maximum and minimum packet value. In [32],

the author provides a lower bound of the competitive ratio for any online algorithm (deterministic

or randomized), which is
1

2
lnθ + 1. [6] presents two online policies, the Round-Robin and Selective

Barrier policy which set a linear non-decreasing threshold function with respect to the queue

length, showing that they are both e ⌈lnθ⌉-competitive. [5] improves the above results for small θ by

proposing the smooth selective barrier policy. When θ is small (specifically, θ < e), the competitive

ratio of smooth selective barrier is proved to be lnθ + 2 +O ( ln
2 θ
B ), where B is the buffer capacity. In

spite of the above works, no optimal online algorithms, either deterministic or randomized have

been proposed since this problem was first formulated. In this paper, one of our most important

contributions is to introduce a randomized online algorithm for the non-preemptive model which

can be proved to be optimal.

2.3 Related Theoretical Problems and Timely Applications in a Broader Background
The investigated problem model in this paper has intrinsic relations to many classic computer

science problems, such as the time series search problem [23], the one-way trading problem [12, 13],

the multiple-choice secretary problem [2, 18] and the online knapsack problem [8, 9]. The substantial

difference is that in addition to the uncertainty in packet arrival (which is the same in above

problems), the QoS buffer management problem comes with another uncertainty in the network

resource supply (that corresponds to the packet departure). This makes the adversary have more

flexibility to make worst input by using two sources of uncertainty.

Almost all aforementioned classic problems have timely applications in the recent active research

topics. For example, [30] is an example of a natural extension of online knapsack problem in the

cloud resource allocation problem. The pricing strategy presented in [30] is close to our profit-based

admission control with a social welfare maximization goal. Similarly, [28] represents the first online

combinatorial auction designed for the cloud computing paradigm. Both [30] and [28] are the

natural extensions of the online knapsack problem. Both works, however, fail to incorporate the

latter uncertainty in provisioning of the network resource. In another recent study [29], an online

offering strategy is proposed in an hour-ahead electricity market with intermittent renewable

supply. This problem is similar to our problem in the sense that both market price and renewable

supply arrive online. The problem in [29] can be considered as a fractional version of the QoS

buffer management problem (see Section 5.1). Different from [29], the solution design in this paper

proves the optimality of the proposed online algorithm.

3 PROBLEM FORMULATION AND PRELIMINARIES
3.1 Problem Formulation
We partition the time horizon into slots according to the arrival time of the packets. Specifically, a

time slot begins just before a new packet arrives to the switching node, and ends before the next

packet arrival. By this definition, each time slot contains exactly one packet arrival.

Suppose that the size of packets are identical and the buffer can store at most B packets. The

number of packet departures at time slot t is denoted by u (t ). By v (t ) ∈ [m,M], we denote the

value of the arriving packet at the beginning of t-th time slot, andM andm denote the maximum

and minimum packet values, respectively. Let θ = M/m be the value fluctuation ratio, which plays

a critical role in the competitive analysis. Both v (t ) and u (t ) are exogenous inputs controlled under
an adversary strategy. The online algorithm must decide to either admit or reject a packet upon

its arrival. We represent the binary decision variable by x (t ) ∈ {0, 1}, where x (t ) = 1 represents
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admission of the packet; 0 otherwise. Finally, b (t ) denotes the buffer level, i.e., the number of

packets in the buffer, at the end of time slot t , and is expressed by

b (t ) = [b (t − 1) + x (t ) − u (t )]+ ,

where [·]+ denotes projection onto the nonnegative orthant. The number of packets in the buffer

must satisfy the buffer capacity constraint, i.e.,

b (t − 1) + x (t ) ≤ B.

The objective is to maximize the profit of the switching node, i.e., the sum of value of admitted

packets, over the time horizon, T = [1,T ]. Mathematically, the problem is formulated as follows:

max

∑
t ∈T

v (t )x (t )

s.t. b (t ) = [b (t − 1) + x (t ) − u (t )]+ , ∀t ∈ T ,
b (t − 1) + x (t ) ≤ B, ∀t ∈ T ,

var. x (t ) ∈ {0, 1}.

(1)

In our analysis, we assume that the initial state of the buffer is 0, i.e., b (0) = 0. In the online

context, the exogenous inputs v (t ) and u (t ), and the ending time T are not known in advance, and

we do not rely on any stochastic modeling of the exogenous inputs.

Note that Problem (1) can be considered as a natural extension the online knapsack problem
1
[8, 9,

31], and the category of conversion problems in financial markets [27]; some well-known variants

are the time series search problem [23], the one-way trading problem [12, 13] and the secretary

problem [2, 18].
2
The exogenous input v (t ) in Problem (1) is similar to the item values in the

online knapsack problem and sequential online price in the conversion problems. However, u (t ) is
another exogenous input to Problem (1) which does not exist in the aforementioned problems. In

terms of competitive design, existence of two set of exogenous inputs, i.e., v (t ) and u (t ), empowers

the adversary to construct worst-case instances in a larger space, potentially resulting in a worse

competitive ratio. Hence, online algorithm design becomes more challenging, since the adversary

is more powerful. We refer to Section 2.3 for detailed discussions regarding similar problems.

3.2 Competitive Ratio
An instance ω ∈ Ω refers to an input instance including the value v (t ) of arriving packets and

departure rates u (t ) over [1,T ], i.e.,

ω
def

= [ω (t ) = (v (t ),u (t ))]t ∈T ,

and Ω is the set of all possible instances, i.e.,

Ω
def

=

{
[(v (t ),u (t ))]t=1:T : v (t ) ∈ [m,M],u (t ) ≥ 0,T ∈ Z+

}
.

The performance measure of online algorithm is competitive ratio [10], which refers to the

maximum ratio of the profit earned by the OPTimal offline solution (OPT) and a particular online

algorithm A under any input instances, i.e.,

cr(A)
def

= max

ω ∈Ω

ProfOPT (ω)

ProfA (ω)
,

1
In the online knapsack problem, the items with different weights and values, i.e., (w (t ), v (t )) arrive online and a feasible

solution is any subset S of items such that

∑
t∈S w (t ) < B , where B is the knapsack capacity. The goal is to maximize the

value of selected items, i.e.,

∑
t∈S v (t ).

2
In the one-way trading problem, a trader needs to exchange from one currency to another currency, given a time-varying

exchange rates arriving online. The trader can decide to accept the current price or wait for the more attractive prices in

future. The time series search problem and secretary problem are also quite similar [13, 23].
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where ProfOPT (ω) and ProfA (ω) are respectively the profit obtained by the optimal offline solution

and the online algorithm A when the input instance isω. For a randomized online algorithm R,

we assume the adversary is oblivious and define the expected competitive ratio as the following:

ecr(R )
def

= max

ω ∈Ω

ProfOPT (ω)

E[ProfR (ω)]
.

3.3 Definitions and Notations Related to Competitive Analysis
By bAω (t ), we denote the queue length at slot t under A and a particular instanceω. Let b denote

the maximum queue length that A reaches underω over the time horizon, i.e., maxt ∈T bAω (t ) = b.
By this definition, we can partition the universal set of input instances, denoted by Ω, into multiple

separate subsets as follows:

Ω =
⋃

b ∈{1,2, ...,B }

ΩAb ,

where

ΩAb
def

=

{
ω ∈ Ω : max

t ∈T
bAω (t ) = b

}
,

represents the set of all input instances that result in the maximum queue length b by executing

algorithm A.

Definition 1. Define the local competitive ratio crb (A) under the subset of input instances ΩAb as

crb (A)
def

= max

ω ∈ΩAb

ProfOPT (ω)

ProfA (ω)
.

Given Definition 1, we redefine cr(A) as

cr(A) = max

b ∈{1,2, ...,B }
crb (A).

We also use the following expressions for an input instanceω = [(v1,u1), (v2,u2), . . . , (vT ,uT )]:

(1) The notation ×n is used to represent repeated input segments. Specifically, (v,u) × n (or

ω × n) signifies the input tuple (v,u) (or input segmentω) will repeatedly appear n times in

the subsequent time slots.

(2) The concatenation ofω1 andω2 is denoted byω1 +ω2 and expressed by

ω1 +ω2 = [ω1 (1),ω1 (2), . . . ,ω1 (T1),ω2 (1),ω2 (2), . . . ,ω2 (T2)] .

4 A SIMPLIFIED ONLINE PROBLEM AND THE THRESHOLD-BASED ALGORITHM
The QoS buffer management problem involves two exogenous inputs v (t ), u (t ). In addition, the

ending time slot T is another exogenous parameter controlled by the adversary. To analyze Prob-

lem (1), we first investigate a simplified version of the original problem by setting the exogenous

input u (t ) to be zero in the entire time horizon. In other words, we assume that there is no packet

departure during the time horizon, i.e., u (t ) = 0, for t = 1, 2, . . . ,T .
In the simplified setting without packet departure, the problem is similar to the online knapsack

problem or k-max search problem except for some detailed settings. To design an online solution

for the simplified scenario, we follow a well-established design approach for these problems and

explore a class of deterministic online algorithms which are threshold-based. The main idea of

the threshold-based strategies is that for any state of the buffer, there is a fixed threshold and

the incoming packet will be admitted if its value is greater than or equal to the corresponding

threshold. The analysis is then focused on demonstrating that by optimizing the threshold values,
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the threshold-based strategy can achieve the optimal competitive ratio among all deterministic

online algorithms for the simplified problem.

4.1 Threshold-Based Policy Design for a Simplified Problem
By simplifying Problem (1) and setting u (t ) = 0, t ∈ T , we formulate the following problem:

max

T∑
t=1

v (t )x (t )

s.t.

T∑
t=1

x (t ) ≤ B.

var. x (t ) ∈ {0, 1}.

(2)

In Problem (2), the exogenous inputs controlled by the adversary strategy are the packet value

v (t ) and the ending time of the investigated time period T . Correspondingly, an input instance

for Problem (2) can be simplified as [v (1),v (2), . . . ,v (T )], since u (t ) = 0 for all t ∈ T . The above

formulation can be roughly explained in the one-way trading or k-max search setting [12, 13],

that the online player is required to convert one asset into another, e.g., dollars for yen, based on

current conversion rate. In the one-way trading v (t ) corresponds to the conversion rate at time slot

t and x (t ) is the binary action of the player (buy or not). The only difference between Problem (2)

and those two conversion problems lies in the ending time of the game. In the one-way trading

problem, the game ends when all the units of assets are sold; and in the k-max search setting, the

player is required to complete the transaction in a given time interval. While the formulation of

Problem (2) implies that the ending time is determined by the adversary.

Another similar problem to Problem (2) is the online knapsack problem [8, 9, 31]. Problem (2)

could be considered as the online knapsack problem with identical items (packets) in size, but, with

different values. It is worth mentioning that our result in the rest of this section for problem (2)

matches the state-of-the-art result for the online knapsack problem [31] where an optimal threshold-

based policy is proposed. The optimality of the proposed solution in [31], however, is based on

the assumption that the size of each item is much smaller than the knapsack capacity. In this

section, we relax this assumption and design a threshold-based online algorithm that achieves the

optimal competitive ratio and analyze it using a different analysis technique than the one used

in [31]. More specifically, the analysis in [31] basically shows that for a given threshold function,

the optimal competitive ratio is achieved. Our approach, in contrast, establishes a “forward policy

design” principle that can derive the optimal thresholding policy by leveraging the concept of local

competitive ratios as defined in Definition 1. As a result, our work facilitates the analysis of other

extended problems (see Section 4.2 for the extension to the original problem).

For Problem (2), we device a threshold-based online algorithm called OnAlg, which is defined

by means of a series of non-decreasing threshold values vi , i = 1, 2, . . . ,B. For convenience, we
categorize those vi s of the same value into a single step. The goal is to design the optimal values of

vi as a function of queue length to specify the minimum value to admit the i-th packet.

Recall that Ω
OnAlg
b is the subset of input instances that result in the maximum queue length b

upon executing the online algorithm OnAlg. The following lemma characterizes a critical property

for the worst instance in Ω
OnAlg
b .

Lemma 4.1. Assume crb (OnAlg) > 1 and ω = [v (t )]t ∈T is a worst instance in Ω
OnAlg
b . Then at

any slot t when OnAlg and OPT buffer packet simultaneously, v (t ) is exactly equal to the threshold of

OnAlg.

Proof. We prove Lemma 4.1 by contradiction.
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Assume that a worst instance is [v (t )]t ∈T . Then suppose there exists a time slot t such that

OnAlg and OPT buffer packet simultaneously and v (t ) is larger than the threshold value of OnAlg,
i.e., v (t ) > vi , i = b (t − 1) + 1. Now we present the following input instance to OnAlg:

[v (1), . . . ,v (t − 1)] + [vi ] + [v (t + 1), . . . ,v (T )].

Under the new instance, the total number of buffered packets and buffering time slots of OnAlg
keep unchanged. The profit earned by OnAlg decreases by v (t ) − vi , while profit decrement of

OPT is less than or equal to v (t ) −vi . The local competitive ratio crb (OnAlg) is larger than 1, so

the above instance results in a larger competitive ratio. This contradicts the assumption thatω is

the worst instance in Ω
OnAlg
b . We complete the proof. □

The next lemma characterizes upper bounds for local competitive ratios of OnAlg.

Lemma 4.2. Assume the threshold-based algorithm OnAlg is defined by non-decreasing threshold

values vi that satisfies the condition v1 =m. If the length of the first step is l , then

(1) for the subset Ω
OnAlg
b where b < l , the local competitive ratio is 1, and

(2) for b ≥ l , the local competitive ratio within the subset Ω
OnAlg
b satisfies

crb (OnAlg) ≤
vb+1B
b∑
i=1

vi

.3 (3)

Proof. For Lemma 4.2, we have the following analysis:

(1) For b < l , the threshold value of OnAlg is always equal tom over T . That means OnAlg
buffers all packets and obtain the same profit as OPT. In this case, the local competitive ratio

is 1.

(2) Suppose b ≥ l . If crb (OnAlg) = 1, the case is trivial and Equation (3) definitely holds. We

only consider the case that crb (OnAlg) > 1. For an instance within Ω
OnAlg
b , the threshold

values of OnAlg are always less than or equal to vb+1 (vb+1 > m), since the maximum queue

length is b and vi are non-decreasing. Assumeω is a worst instance lying in Ω
OnAlg
b . Then,

according to Lemma 4.1, a packet value underω will be exactly equal to the threshold value

of OnAlg when OPT and OnAlg buffer this packet simultaneously. Moreover, when only

OPT buffers a packet, it is obvious that the packet value is less than the threshold value of

OnAlg. That means, underω, all the packets buffered by OPT are of values less than or equal

to vb+1. Thus, the profit earned by OPT underω is at most vb+1B. Meanwhile, the minimum

profit earned by OnAlg is at least
b∑
i=1

vi due to its threshold-based admission strategy. Thus,

we have proved that the largest profit ratio within subset Ω
OnAlg
b is at most vb+1B/

b∑
i=1

vi .

This completes the proof. □

For b > l , consider the following instance with increasing packet values:

[v1,v2, . . . ,vb , (vb+1 − δ ) × B],

3
For consistence, we define vB+1 = M .
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under which the profit earned by OPT is (vb+1 −δ )B and the profit earned by OnAlg is
∑b

i=1
vi . The

worst-case profit ratio shown in Equation (3) can be realized by the above instance with δ → 0, i.e.,

crb (OnAlg) ≥ lim

δ→0

(vb+1 − δ )B
b∑
i=1

vi

.

Combining with Lemma 4.2, we get

crb (OnAlg) =
vb+1B
b∑
i=1

vi

, for b ≥ l . (4)

According to Lemma 4.2 and Equation (4), the worst case occurs among subsets Ω
OnAlg
b , b ≥ l , so

the competitive ratio of OnAlg is

cr(OnAlg) = max

b=l,l+1, ...,B

vb+1B
b∑
i=1

vi

.

Conditioning on the length of the first step l , the minimum competitive ratio, which is denoted

by cr(OnAlg|l ) can be obtained by optimizing the threshold values vl+1,vl+2, . . . ,vB :

min y

s.t. y ≥ (vb+1B)/
b∑
i=1

vi , b = l , l + 1, . . . ,B.

vars. y, m ≤ vb ≤ M, b = l + 1, l + 2, . . . ,B.

(5)

The following lemma gives a necessary condition for cr(OnAlg|l ) to achieve its minimum value.

Lemma 4.3. cr(OnAlg|l ) achieves its minimum value only if the following expression holds:

vl+1B

ml
=

vl+2B

ml +vl+1

= · · · =
MB

ml +
B∑

i=l+1

vi

· (6)

In the next step, we show that the minimum value of problem (5) is at least lnθ + 1, which

provides a lower bound for the competitive ratio of OnAlg. By Equation (6), we can represent B as

B = (
vl+1

m
+
vl+2 −vl+1

vl+1

+
vl+3 −vl+2

vl+2

+ · · · +
M −vB
vB

)
m

vl+1

l .

Thus, the competitive ratio of OnAlg with the first step length being l can be expressed as

cr(OnAlg|l ) = 1 +
vl+1 −m

m
+
vl+2 −vl+1

vl+1

+ · · · +
M −vB
vB

·

Let S = vl+1
−m

m +
vl+2
−vl+1

vl+1

+
vl+3
−vl+2

vl+2

+ · · · +
M−vB
vB

. Since the value of S is equal to the size of the

shaded area in Figure 1, we have cr(OnAlg|l ) > 1 + ln
M
m = 1 + lnθ .

According to the results in Lemma 4.3, the following theorem follows.

Theorem 4.4. Given a non-decreasing threshold values with the length of the first step being l , the
optimal competitive ratio that can be achieved by OnAlg, denoted by r (l ) satisfies(

r (l ) + B

B

)B−l+1

−

(
r (l ) + B

B

)B−l
−
θ

l
= 0. (7)
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0


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=

m M1lv + 2lv + iv Bv

1

iv

Fig. 1. Visualized expression of S .

Assuming l∗ is the optimal solution to minimize the above function and r ∗ is the corresponding optimal

value, the optimal threshold values are

vl ∗+1 =
r ∗ml ∗
B ,

vl ∗+i+1 = vl ∗+1

(
M

vl∗+1

) i
B−l∗ , for i = 1, 2, . . . ,B − l∗.

Proof. According to Lemma 4.3, we have

vl+1 =
r (l )ml

B
·

Moreover,

vl+2 −vl+1

vl+1

=
vl+3 −vl+2

vl+2

= · · · =
vB+1 −vB

vB
,

hence,

vi+1

vi
=

(
M

vl+1

) 1

B−l

, i = l + 1, l + 2, . . . ,B.

The above equations give the threshold values.

According to Lemma 4.3, we have that

vi+1 −vi
vi

m

vl+1

l = 1, i = l + 1, l + 2, . . . ,B.

Thus, combining the above equations, we have

vl+1

m
=



(
M

vl+1

) 1

B−l

− 1


l .

Replacing vl+1 with
r (l )ml
B yields Equation (7). □

We have introduced a threshold-based strategy OnAlg with a set of non-decreasing threshold

values. The next theorem shows that OnAlg is optimal among all deterministic online algorithms.

Theorem 4.5. The threshold-based algorithm OnAlg is optimal among all deterministic online

algorithms.
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Proof. Let A be any deterministic online algorithm. In order to prove this theorem, we shall

show that A cannot achieve a lower competitive ratio than that of OnAlg. Toward this, consider

the following instance with increasing packet values

[(m) × B︸   ︷︷   ︸
first round

, (m + δ ) × B︸        ︷︷        ︸
second round

, . . . , (m + (n − 1)δ ) × B︸                  ︷︷                  ︸
penultimate round

, (m + nδ ) × B︸          ︷︷          ︸
last round

],

where δ = M−m
n . By v̄i , we denote the packet value of the i-th packet that A admits under the

above instance. In the first round,A is presented packets of packet valuem for B times. IfA never

accept any packet, the adversary can stop the process right after the first round and construct an

instance with the profit ratio being infinite. Assume A accepts
¯l > 0 packets in the first round. Let

B̄ be the total number of packets buffered during the above process. Then, the profit ratio between

OPT and A when the adversary presents the entire instance to A is
MB∑B̄
i=1

v̄i
.

Moreover, we assume during the above process, b-th (b ≥ ¯l ) and (b + 1)-th packets are admitted

in the j-th and j ′-th round, respectively. If j = j ′, the adversary can stop right after A admits the

b-th packet. In this case, the profit obtained by A will be

∑b
i=1

v̄i , and that of OPT will not be less

than (v̄b+1 − δ )B (buffering packets during the (j − 1)-th round). In this case, the profit ratio can be

(v̄b+1
−δ )B∑b

i=1
v̄i

. When j , j ′, the adversary can stop the input instance right after the (j ′ − 1)-th round

and get a profit ratio of
(v̄b+1

−δ )B∑b
i=1

v̄i
. Thus, for any

¯l ≤ b ≤ B̄ − 1, we can always construct an instance

under which the profit ratio between OPT and A is at least
(v̄b+1

−δ )B∑b
i=1

v̄i
.

With δ → 0, we have

cr(A) ≥ max

¯l ≤b≤B̄




lim

δ→0

(v̄b+1 − δ )B∑b
i=1

v̄i
,

MB∑B̄
i=1

v̄i




≥ max

¯l ≤b≤B̄




v̄b+1B∑b
i=1

v̄i
,

MB∑B̄
i=1

v̄i




≥ max

¯l ≤b≤B

v̄b+1B∑b
i=1

v̄i

≥min

l,vi
max

l ≤b≤B

vb+1B∑b
i=1

vi
= cr(OnAlg),

where in the penultimate inequality, we set v̄i = v̄B̄ for B̄ < x ≤ B and v̄B+1 = M .

This completes the proof. □

In [31], an online optimal solution to the online knapsack problem is derived by assuming that

the item size is much smaller than the capacity of the knapsack. Using the solution in [31], a similar

result can be obtained to problem (2) by allowing the number of packets to take fractional values.

The following corollary restates this result simply for the convenience of the readers since it is

required in our subsequent analysis for the general problem.

Corollary 4.6. In the special case of allowing the number of packets to take fractional values, the

optimal competitive ratio of Problem (2) is

cr(OnAlg) = lnθ + 1,
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and the optimal threshold function д(x ) : [0,B] → [m,M] (which is a continuous analogue of the

discrete threshold values) is

д(x ) =

{
m, x ≤ B

ln θ+1
,

me (ln θ+1) xB −1, otherwise.
(8)

4.2 A Threshold-Based Strategy for the General Problem
In this section, we apply the threshold-based strategy to the original problem which allows packet

departure, i.e., u (t ) ≥ 0, t ∈ T . In order to analyze the performance of the threshold-based strategy,

we can divide the investigated time period into multiple cycles.

Definition 2. Given a threshold-based online algorithm gOnAlg, a cycle is defined to be the time

interval beginning and ending whenever the buffer under gOnAlg becomes empty. Specifically, let

0 ≤ t1 < t2 < · · · < tn ≤ T denote the time slots when the queue length under gOnAlg goes to 0, then

the time interval [tτ + 1, tτ+1], τ ∈ {1, 2, . . . ,n − 1} forms a cycle.

The following observation implies that the analysis for the competitive ratio can be conducted

within a cycle.

Lemma 4.7. Letω be a worst instance and C be any cycle realized by gOnAlg underω, then the

profit ratio between OPT and gOnAlg during C is equal to the competitive ratio of gOnAlg.

Proof. Assume under the worst instanceω = [(v (τ ),u (τ ))]τ ∈T , there is a cycle C = [s + 1, t]
during which the maximum profit ratio is smaller than cr (gOnAlg). At time slots s and t , the buffer
under gOnAlg is emptied. We just increase u (s ) and u (t ) by a large number λ such that the buffer

under OPT also becomes empty. This operation never changes subsequent operations of gOnAlg,
as well as the obtained profit. Also, the profit obtained by OPT is unchanged sinceω has resulted

in the worst-case profit ratio. Then, we can “remove” the input segment over C and present the

instance [(v (τ ),u (τ ))]τ=1:s−1 + [(v (s ),u (s ) + λ)] + [(v (τ ),u (τ ))]τ=t+1:T to gOnAlg and get a larger

profit ratio, contradicting the assumption on the worst instance. Similarly, if the profit ratio during

one cycle is larger than the competitive ratio, presenting the following input instance to gOnAlg
yields the increase of the profit ratio:

[(v (τ ),u (τ ))]τ=1:s−1 + [(v (s ),u (s ) + λ)] +ωC × 2 + [(v (τ ),u (τ ))]τ=t+1:T ,

whereωC = [(v (τ ),u (τ ))]τ=s+1:t−1 + [(v (t ),u (t ) + λ)]. This also contradicts the assumption on the

worst instance. □

Based on the above lemma, our analysis on the competitive ratio of gOnAlg can be reduced to

instances which only contain one cycle. By Ω
gOnAlg
b , we denote the subset of single-cycle input

instances with the maximum queue length being b. The following lemma characterizes the local

competitive ratio within such a subset.

Lemma 4.8. Assume the threshold-based online algorithm gOnAlg is equipped with a series of

non-decreasing threshold values vi satisfying v1 =m. If the length of the first step is l , we have:

(1) For the subset Ω
gOnAlg
b where b < l , the local competitive ratio is 1.

(2) For b ≥ l , the local competitive ratio within the subset Ω
gOnAlg
b is

crb (gOnAlg) ≤
vb+1B +

b∑
i=l+1

vi

b∑
i=1

vi

. (9)
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Inequality (9) holds with equality when the local competitive ratio within Ω
gOnAlg
b satisfies

crb (gOnAlg) ≥ crb′ (gOnAlg) for all b ′ < b.

By Lemma 4.8, we have

cr(gOnAlg) = max

b=l,l+1, ...,B
crb (gOnAlg) = max

b=l,l+1, ...,B

vb+1B +
b∑

i=l+1

vi

b∑
i=1

vi

.

Similar to Lemma 4.3, the next lemma explains how to optimize the threshold values vi .

Lemma 4.9. If the length of the first step l is determined, cr(gOnAlg|l ) maximizes if and only if

the following equalities hold:

vl+1B

ml
=
vl+2B +vl+1

ml +vl+1

= · · · =

vBB +
B−1∑
i=l+1

vi

ml +
B−1∑
i=l+1

vi

=

MB +
B∑

i=l+1

vi

ml +
B∑

i=l+1

vi

.

Theorem 4.10. Assuming l is given, the minimum competitive ratio of gOnAlg, denoted by r (l )

satisfies

Bθ

r (l )l
=

(
r (l ) (B − l )

B2
+ 1

)B−l
. (10)

Assuming l∗ is the optimal solution to minimize the above function and r ∗ is the corresponding optimal

value, then the optimal threshold values are

vl ∗+1 =
r ∗ml ∗
B ,

vl ∗+i+1 = vl ∗+1

(
M

vl∗+1

) i
B−l∗ , i = 1, 2, . . . ,B − l∗.

Proof. By induction, we can derive that

m

vl+1

Bl

B − l

vi+1 −vi
vi

= 1, i = l + 1, l + 2, . . . ,B. (11)

That implies

vl+2 −vl+1

vl+1

=
vl+3 −vl+2

vl+2

= · · · =
vB+1 −vB

vB
,

so

vi+1

vi
=

(
M
vl+1

) 1

B−l , i = l + 1, l + 2, . . . ,B. (12)

Moreover, according to Lemma 4.9, we have

vl+1 =
r (l )ml

B
.

Combining the above equation and (12), we can obtain the threshold values shown in the theorem.

According to Equation (11), we have

vl+1

m
=



(
M

vl+1

) 1

B−l

− 1



Bl

B − l
.

Replacing vl+1 with
r (l )ml
B yields Equation (10). □
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Remark 1. By Equation (10), one can conclude that when B is large enough, the competitive

ratio approximates
(2+ln θ )+

√
ln

2 θ+4 ln θ
2

, which is superior to the existing results (e ⌈lnθ⌉ in [6] and

lnθ + 2 +O ( ln
2 θ
B ) in [5]).

5 OPTIMAL RANDOMIZED ONLINE ALGORITHM
In the discrete case, the deterministic online algorithm can only admit or reject an incoming packet.

It is beneficial for online algorithms to buffer a fraction of the packet if this is a viable option.

Motivated by this observation, we focus on finding an optimal online algorithm for the fractional

admission model. In this section, by considering fractional model, we design a novel online strategy

and show it achieves the lower bound for competitive ratio of lnθ + 1. Then, in Section 5.2, we

extend the result into the original discrete setting.

5.1 Optimal Online Algorithm for the Fractional Admission Model
In Section 4.1, we devised an algorithm for a simplified online problem without packet departure

over the time horizon. We showed that for the discrete and fractional cases, the optimal competitive

ratio can be obtained by a threshold-based algorithm, which maintains a fixed threshold value for

each state of the queue length. For the general case with packet departure, the available space for

buffering packets changes over the time. Thus, the threshold-based strategy whose threshold only

depends on the queue length may yield a suboptimal competitive ratio. In this section, we aim

to find the optimal competitive ratio for the general case. Toward this goal, we propose a novel

online algorithm fOnAlg. In a nutshell, we introduce virtual sub-queues which track the history of

packet departures and maintain a threshold-based strategy for each virtual sub-queue. The details

of fOnAlg are as follows.

5.1.1 State of fOnAlg. Without loss of generality, we assume the initial state of the queue length

is 0. fOnAlg initially sets B empty sub-queues, each of which with capacity 1. This corresponds to

the initial buffer budget of B. Note that packet departure may or may not occur at any time slot.

Hence, let ti , i = 1, 2, . . . ,h denote the time slots that at least one packet departure occurs. If there

are u (ti ) packets departure in slot ti , then u (ti ) virtual sub-queues, each with capacity 1, will be

created by the end of slot ti . When the original queue length b (t ) becomes 0, the virtual sub-queues

created due to packet departures is deleted and the queue lengths of the initial B sub-queues are

set to 0. Let D be a sufficiently large integer value. A packet is conceptually divided into D equal

sub-packets. We denote the discretized queue length of the i-th sub-queue by
¯bi (t ) which can only

take integer values between 0 and D. Using the above setups, we define fOnAlg algorithm by

extending the original system state b (t ) to a state vector
¯b(t ) = [

¯b1 (t ), ¯b2 (t ), . . . , ¯bn (t )], where n is

the number of virtual sub-queues at time slot t . It is easy to see that b (t ) equals to
∑n

i=1

¯bi (t ) −n+B.
Figure 2 depicts the state of fOnAlg at time slot t .

+
B

+ + +

Initial Stage

1( )u t
2( )u t

Added sub-queues 
at 1t

Added sub-queues 
at 2t

Added sub-queues 
at mt

( )1b t ( )2b t ( )Bb t ( )nb t

( )hu t

Fig. 2. Description of the state of fOnAlg at time slot t .
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5.1.2 Admission Policy of fOnAlg. In fOnAlg, admission policy determines the fraction of the

packet to be admitted, i.e., the number of sub-packets in [0,D] that must be admitted. The number

of admitted sub-packet depends on the system state
¯b(t ). Toward this, for each sub-queue i , fOnAlg

maintains a fixed threshold function дD ( ¯bi ) that can be used to determine the number of admitted

sub-packets of an arriving packet. The function is defined by

дD ( ¯bi ) =



m,
¯bi
D ≤

1

ln θ+1
,

me (ln θ+1)
¯bi
D −1, otherwise.

(13)

Equation (13) is a scaled version of (8). Based on Equation (13), the number of sub-packets that the

i-th sub-queue can admit, denoted by x̄i (t ) is determined by

x̄i (t ) = max ϵ
s.t. дD ( ¯bi (t − 1) + ϵ ) ≤ p (t ),
var. ϵ ∈ N.

By the above admission policy, the value of admitted sub-packets is guaranteed to be larger than

the threshold of each sub-queue at any time slot. Then, the total number of aggregated sub-packets

is simply the aggregation of sub-packets in each sub-queue truncated by D, i.e.,

x̄ (t ) = min




n∑
i=1

x̄i (t ),D


.

The value of x̄ (t ) is the admitted amount of an arriving packet by fOnAlg under state
¯b(t − 1) and

packet value v (t ). We use д̄D (¯b) to denote the minimum threshold for fOnAlg to admit portion of

packet when the algorithm state is
¯b, i.e.,

д̄D (¯b) = min

i=1,2, · · · ,n
дD ( ¯bi + 1).

д̄D (¯b) only depends on the algorithm state
¯b.

5.1.3 Allocation Policy of fOnAlg. Given that the number of sub-packets to be buffered is x̄ (t ),
fOnAlg allocates these sub-packets among the n sub-queues in a water-filling way (as shown in

Figure 3). In this way, the value of an allocated sub-packet is always larger than the threshold value

of the sub-queue. Specifically, the allocation algorithm is as follows.

ALGORITHM 1: Allocation Policy of fOnAlg (Water-filling policy)

for i = 1 to x̄ (t ) do
I ← The sub-queues with smallest queue length

Allocate i-th sub-packet to the sub-queue with the smallest index in I, and increase its queue length by 1.

Sub-packets to 
be allocated

sub-queues having been set up

 Sub-packets having 
been buffered

Fig. 3. Allocate admitted sub-packets in a water-filling manner.
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5.1.4 Performance Analysis of fOnAlg. When a packet departs, a unit of buffer space is released

and the available buffering budget increases accordingly. The conceptual idea of fOnAlg is to build

a virtual sub-queue for each unit of released buffering space. An arriving packet is broken into

multiple sub-packets and admitted to the original buffer and sub-queues under a thresholding

policy such that that the packet value of a buffered sub-packet is not less than the threshold. In

order to analyze the competitive ratio of fOnAlg, we face fOnAlg with a more “powerful” adversary

that can transmit a portion of packet aiming to construct a worse instance. Let d (t ), 1 ≤ d (t ) ≤ D
denotes the number of sub-packets transmitted to the switch node at time slot t . Under the powerful
adversary, an input instance has the following extended form

[ω̄ (t ) = (v (t ),u (t ),d (t ))]t ∈T ,

where v (t ) and u (t ) are as the previous exogenous inputs. Note that when d (t ) = D, t ∈ T , the

input instance will be reduced to the previous one defined in Section 3. Thus, the competitive

ratio of fOnAlg when faced with the powerful adversary characterizes an upper bound for the

competitive ratio of fOnAlg (under a standard adversary defined in Section 3).

By analyzing the admission and allocation policies of fOnAlg, we observe the following two

critical properties:

(1) When queue lengths are equal, fOnAlg will allocate the sub-packet to the sub-queue with
smaller index. Thus, at any slot t , the following inequalities always hold:

¯b1 (t ) ≥ ¯b2 (t ) ≥ · · · ≥ ¯bn (t ).

(2) When a sub-packet is allocated to a sub-queue, the packet value is always larger than or

equal to the threshold value of the sub-queue.

Under the powerful adversary, the following Lemma characterizes a critical property of the worst

instance for fOnAlg.

Lemma 5.1. Assume ω̄ = [ω̄ (t ) = (v (t ),u (t ),d (t ))]t ∈T is a worst instance for fOnAlg under the
powerful adversary. Then, at any time slot t when fOnAlg buffers portion of packet, v (t ) is exactly
equal to the threshold of fOnAlg, i.e.,

v (t ) = д̄D (¯b(t − 1)).

Proof. Assume during the worst instance, there exists a time slot that v (t ) is larger than the

threshold value д̄D (¯b(t − 1)) and x̄ (t ) sub-packets are admitted by fOnAlg. We first present the

instance segment [(v (1),u (1),d (1)), . . . , (v (t − 1),u (t − 1),d (t − 1))] to fOnAlg. After that, we
further present the instance segment [(д̄D (¯b(t − 1)), 0, 1), (v (t ), 0, x̄ (t ) − 1)] to fOnAlg, and the

number of buffered sub-packets is equal to x̄ (t ). In this way, the profit earned from the buffered x̄ (t )
sub-packets decreases by [v (t ) − д̄D (¯b(t − 1))]/D. After that, we present the remaining instance

segment [(v (t + 1),u (t + 1),d (t + 1)), (v (t + 2),u (t + 2),d (t + 2)), . . . , (v (T ),u (T ),d (T ))] to fOnAlg.
Under the above instance, the profit earned by OPT decreases by at most [v (t ) − д̄D (¯b(t − 1))]/D,
which is also the decrement amount of fOnAlg. In this way, we construct a new instance that

results in a larger competitive ratio, contradicting the assumption on the worst instance. □

The next Lemma implies that the competitive analysis of fOnAlg can be conducted within a

cycle (see Definition 2).

Lemma 5.2. Let ω̄ be a worst instance and C be a cycle realized by fOnAlg under ω̄, then the profit

ratio during C is equal to the competitive ratio of fOnAlg.

The proof is analogous to that for Lemma 4.7 and is omitted. The following theorem shows the

competitive ratio of fOnAlg.
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Theorem 5.3. Under the fractional admission assumption, fOnAlg achieves the competitive ratio[
1 + (lnθ + 1) θD

]
· (lnθ + 1) .

Proof. We assume there is a worst instance for fOnAlg which only contains one cycle and at

time t , the state of fOnAlg is as shown in Figure 2. By si , we denote the time slot at which the i-th
sub-queue is built up. From the allocation policy of fOnAlg, we have

¯b1 (t ) ≥ ¯b2 (t ) ≥ · · · ≥ ¯bn (t ).

During [si + 1, t], the threshold values of fOnAlg is always less than or equal to дD ( ¯bi (t ) + 1). Thus,
during the worst instance, packet values in [si + 1, t] are always less than or equal to дD ( ¯bi (t ) + 1).
Otherwise, the packet value will be larger than the threshold of fOnAlg, contradicting Lemma 5.1.

Above analysis demonstrates that under the worst instance for fOnAlg, packet values are not
larger than дD ( ¯bi (t ) + 1) after the i-th sub-queue is built up. Thus, the profit earned by OPT over

[1, t] is less than or equal to

ProfOPT ≤ дD ( ¯b1 (t ) + 1) + дD ( ¯b2 (t ) + 1) + · · · + дD ( ¯bn (t ) + 1). (14)

On the other hand, according to the admission policy of fOnAlg, a sub-packet is admitted by a

sub-queue only when its packet value is larger than or equal to the threshold, so the aggregated

profit of the buffered sub-packets in the i-th sub-queue is not less than

∑ ¯bi (t )
k=1

дD (k ). By the property
of the threshold function дD (see the analysis in Section 4.1), we have

¯bi (t )∑
k=1

дD (k ) ≥
дD

(
¯bi (t )

)
lnθ + 1

·

Hence, the profit earned by fOnAlg over [1, t] is larger than or equal to

ProffOnAlg ≥
дD ( ¯b1 (t )) + дD ( ¯b2 (t )) + · · · + дD ( ¯bn (t ))

lnθ + 1

· (15)

Putting together Equations (14) and (15), we have

cr(fOnAlg) ≤
дD ( ¯b1 (t ) + 1) + дD ( ¯b2 (t ) + 1) + · · · + дD ( ¯bn (t ) + 1)

дD ( ¯b1 (t )) + дD ( ¯b2 (t )) + · · · + дD ( ¯bn (t ))
· (lnθ + 1)

≤ max

1≤i≤n

дD ( ¯bi (t ) + 1)

дD ( ¯bi (t ))
· (lnθ + 1)

≤

[
1 + (lnθ + 1)

θ

D

]
· (lnθ + 1).

The last inequality is according to the fact that the largest derivative of дD ( ¯bi ), 0 ≤ ¯bi ≤ D is

m(lnθ + 1)θ 1

D and д( ¯bi ) ≥ m. □

Corollary 5.4. Assuming D → ∞, the competitive ratio of fOnAlg approximates the lower bound

of lnθ + 1.

Remark 2. We note the following property concerning the admission amount when D → ∞. For

notational convenience, let us denote by
˜bi (t ) the actual amount of packet in the i-th sub-queue and

use x̃i (t ) to denote the actual amount of packet that can be admitted by the i-th sub-queue. According

to the admission policy of fOnAlg, we can deduce that when D → ∞, the amount of packet that the

i-th sub-queue can admit is

x̃i (t ) =


ln
v (t )
m + 1

lnθ + 1

− ˜bi (t − 1)


+

.
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Similarly, the actual admitted amount at time slot t , denoted by x fOnAlg (t ), can be obtained by

truncating the aggregation of x̃i (t ) for all sub-queues. That is,

x fOnAlg (t ) = min




n∑
i=1

x̃i (t ), 1


.

Then, a fraction of x fOnAlg (t ) of the packet will be allocated among sub-queues in a water-filling way

as shown in Figure 3.

5.2 Optimal Randomized Strategy for the Discrete Admission Model
In this section, we extend the fractional algorithm in the previous section and design a randomized

online algorithm for the general discrete model. Intuitively, the expected competitive ratio can

be improved to be equal to that of fOnAlg by properly designing the buffering probability. In

the following, we introduce a randomized strategy rOnAlg (as for randomized online algorithm)

which can attain this goal by online rounding. Given that the amount of packet buffered by fOnAlg
assuming D → ∞ at time slot t is x fOnAlg (t ), we propose the following operation rules for rOnAlg.

At time slot t , our proposed randomized rounding algorithm computes the admission probability

according to the admission amount of fOnAlg with D → ∞ (summarized as Algorithm 2).

ALGORITHM 2: Randomized Rounding Algorithm rOnAlg, at slot t

q(t ) ← 0 the admission probability of packet at slot t

if ⌊bfOnAlg (t − 1) + x fOnAlg (t )⌋ = ⌊bfOnAlg (t − 1)⌋ then

if brOnAlg (t − 1) = ⌊bfOnAlg (t − 1)⌋ then

q(t ) ←
x fOnAlg (t )

⌊bfOnAlg (t − 1)⌋ + 1 − bfOnAlg (t − 1)
(16)

else

q(t ) ← 0

if ⌊bfOnAlg (t − 1) + x fOnAlg (t )⌋ = ⌊bfOnAlg (t − 1)⌋ + 1 then

if brOnAlg (t − 1) = ⌊bfOnAlg (t − 1)⌋ then

q(t ) ← 1

else

q(t ) ←
x fOnAlg (t ) + bfOnAlg (t − 1) − ⌊bfOnAlg (t − 1)⌋ − 1

bfOnAlg (t − 1) − ⌊bfOnAlg (t − 1)⌋
(17)

Admit the packet with probability q(t )

Before analyzing the competitive ratio of above randomized policy, we first provide a general

lower bound for the competitive ratio of any randomized online algorithms. Subsequent analysis

demonstrates that the obtained lower bound is tight.

Theorem 5.5. The competitive ratio for any randomized online algorithm is lower bounded by

lnθ + 1.

Proof. Given the initial state of the buffer being empty, an adversary can present enough packets

with packet value v̄1 = m to a randomized online algorithm R. It is obvious that the number of

packets admitted by R will increase and definitely converge to some constant value, denoted by l1.
Note that l1 can be regarded as a random variable for a randomized online algorithm. After that, we

further present enough packets with packet value v̄2 > v̄1 to R, and assume ultimately there are l2
packets buffered. We repeat this process for n times and let v̄n = M . Since the adversary can choose

to stop the above input instance at any time. Hence, for such an input instance, it is possible for any
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R to achieve a profit ratio equal to (v̄iB)/
(∑i

k=1
v̄klk

)
, i = 1, 2, . . . ,n. The expected competitive

ratio is larger than or equal to the maximum one among those ratios. That is

ecr(R ) ≥ max

i=1,2, ...,n

v̄kB

E

[
i∑

k=1

v̄klk

] = max

i=1,2, ...,n

v̄kB
i∑

k=1

v̄kE [lk ]

.

Obviously,

i∑
k=1

E [lk ] ≤ B. From the previous analysis, we can verify that

max

i=1,2, ...,n

v̄iB∑i
k=1

v̄kE [lk ]

≥ lnθ + 1,

and thus ecr(R ) ≥ lnθ + 1, the proof is completed. □

Lemma 5.6.

⌊
bfOnAlg (t )

⌋
≤ brOnAlg (t ) ≤

⌊
bfOnAlg (t )

⌋
+ 1.

Proof. Assuming the initial state of the buffer is empty, we proceed to prove by induction. For

the base case we have ⌊
bfOnAlg (t )

⌋
≤ brOnAlg (t ) ≤

⌊
bfOnAlg (t )

⌋
+ 1,

which holds when t = 0.

Now, assume the lemma holds for t ≤ k , i.e., brOnAlg (t ) is equal to either

⌊
bfOnAlg (k )

⌋
or⌊

bfOnAlg (k )
⌋
+ 1. As illustrated in Figure 4, when brOnAlg (t ) lies at point “A”, the arriving packet is

buffered with probability 0; and when brOnAlg (t ) lies at point “B”, the arriving packet is buffered
with probability 1.

Queue Length

Queue Length

Α

Β

fOnAlg fOnAlg fOnAlg( ) ( ) ( ) :b k x k b kê ú ê ú+ =ê ú ê úë û ë û

fOnAlg ( )b kê úê úë û
fOnAlg ( )b k fOnAlg ( ) 1b kê ú +ê úë û

fOnAlg fOnAlg fOnAlg( ) ( 1) ( ) 1:b k x k b kê ú ê ú+ + = +ê ú ê úë û ë û

fOnAlg ( 1)x k+ +

fOnAlg ( )b kê úê úë û
fOnAlg ( )b k fOnAlg ( ) 1b kê ú +ê úë û

fOnAlg ( 1)x k+ +

Fig. 4. The illustration of the proof for Lemma 5.6.

Putting together the observations in Figure 4, the following inequalities hold:

⌊
bfOnAlg (k ) + x fOnAlg (k + 1)

⌋
≤brOnAlg (k ) + x rOnAlg (k + 1)

≤
⌊
bfOnAlg (k ) + x fOnAlg (k + 1)

⌋
+ 1.

Hence,

[ ⌊
bfOnAlg (k ) + x fOnAlg (k + 1)

⌋
−u (k + 1)

]+
≤

[
brOnAlg (k ) + x rOnAlg (k + 1) − u (k + 1)

]+

≤
[ ⌊
bfOnAlg (k ) + x fOnAlg (k + 1)

⌋
+ 1−u (k + 1)

]+
,
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for u (k + 1) ∈ N, so
⌊
bfOnAlg (k + 1)

⌋
≤ brOnAlg (k + 1) ≤

⌊
bfOnAlg (k + 1)

⌋
+ 1.

This completes the proof. □

Lemma 5.7. E
[
x rOnAlg (t )

]
= x fOnAlg (t ).

Proof. We prove by induction again. Assume the initial state of the queue length is 0, i.e.,

bfOnAlg (0) = brOnAlg (0) = 0. If x fOnAlg (1) < 1, then

⌊
bfOnAlg (0) + x fOnAlg (1)

⌋
=

⌊
bfOnAlg (0)

⌋
.

Hence, according to Equation (16), the packet is admitted with probability

x fOnAlg (1)⌊
bfOnAlg (0)

⌋
+ 1 − bfOnAlg (0)

= x fOnAlg (1).

If x fOnAlg (1) = 1, then ⌊
bfOnAlg (0) + x fOnAlg (1)

⌋
=

⌊
bfOnAlg (0)

⌋
+ 1.

The arriving packet will be admitted with probability 1. So when t = 1, we have E
[
x rOnAlg (t )

]
=

x fOnAlg (t ) and also E
[
brOnAlg (t )

]
= bfOnAlg (t ).

Now, assume E
[
x rOnAlg (t )

]
= x fOnAlg (t ) and E

[
brOnAlg (t )

]
= bfOnAlg (t ) hold for t ≤ k . Based

on Lemma 5.6, we know that brOnAlg (t ) is equal to either

⌊
bfOnAlg (t )

⌋
or

⌊
bfOnAlg (t )

⌋
+ 1. When

E
[
brOnAlg (k )

]
= bfOnAlg (k ), we can deduce that brOnAlg (k ) is equal to

⌊
bfOnAlg (k )

⌋
with probability⌊

bfOnAlg (k )
⌋
+1−bfOnAlg (k ) and equal to

⌊
bfOnAlg (k )

⌋
+1 with probability bfOnAlg (k )−

⌊
bfOnAlg (k )

⌋
.

By verifying the operations of rOnAlg, we can easily get that E
[
x rOnAlg (k + 1)

]
= x fOnAlg (k + 1).

Moreover, ifbfOnAlg (k )+x fOnAlg (k+1) ≥ u (k+1), we must havebrOnAlg (k )+x rOnAlg (k+1) ≥ u (k+1)
according to Lemma 5.6. In this case, we have

E
[
brOnAlg (k + 1)

]
=E

[
[brOnAlg (k ) + x rOnAlg (k + 1) − u (k + 1)]+

]

=E
[
brOnAlg (k ) + x rOnAlg (k + 1) − u (k + 1)

]

=E
[
brOnAlg (k )

]
+ E

[
x rOnAlg (k + 1)

]
− u (k + 1)

=bfOnAlg (k + 1).

If bfOnAlg (k ) +x fOnAlg (k + 1) ≤ u (k + 1), we must have brOnAlg (k ) +x rOnAlg (k + 1) ≤ u (k + 1). In this

case, brOnAlg (k + 1) = bfOnAlg (k + 1) = 0. Then, we can conclude that E
[
x rOnAlg (t )

]
= x fOnAlg (t )

and E
[
brOnAlg (t )

]
= bfOnAlg (t ) hold for t = k + 1. By concluding the above all, we can get the final

results as desired. □

Theorem 5.8. rOnAlg achieves the optimal competitive ratio, i.e., lnθ + 1.

Proof. As shown in Corollary 5.4, whenD → ∞, the competitive ratio of fOnAlg achieves lnθ+1.

Moreover, from Lemma 5.7, we have that the expected amount of admitted packet under rOnAlg is

always equal to that of fOnAlg for all times, and thus rOnAlg achieves the same competitive ratio

as fOnAlg with D → ∞. This proves the optimality of rOnAlg. □
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6 CONCLUSION
In this paper, we studied the classic non-preemptive QoS buffer management problem, where its

optimal online solution was an open problem for a decade. By relaxing the original discrete model

to a fractional setting, we proposed a novel online algorithm that maintains a series of virtual

sub-queues to record the available buffer budget over time. We proved it achieves the optimal

competitive ratio. By devising a randomized rounding scheme, we then extended the fractional

algorithm into the original discrete setting. Our analysis demonstrated that the randomized scheme

achieves the optimal competitive ratio of lnθ + 1.

Last but not the least, the problem is of interest in a general admission control problem that could

be applied to the state-of-the-art applications. As an example, we stress the value-based resource

allocation in data centers with limited computation capacities, in which the jobs must be either

admitted or rejected upon their arrival based on their values and the utilization of the servers.
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A PROOFS
A.1 Proof of Lemma 4.3

Proof. By partially dualizing on the first set of nonequality constraints, we obtain the following

Lagrangian function:

L(y,v, µ) = y +
B−l∑
i=0

µi (vl+i+1B − y
l+i∑
j=1

vj ),

where µi , i = 0, 1, . . . ,B − l are the dual variables associated with the non-equality constraints.

The first-order optimality necessity condition can be expressed as

1 −

B−l∑
i=0

µi

l+i∑
j=1

vj = 0,

µiB − y
B−l∑
k=i+1

µk = 0, i = 0, 1, . . . ,B − l − 1.

Note thatm ≤ vj ≤ M for j = l + 1, l + 2, . . . ,B − 1. Then, by the means of above equations,

we can show that µi > 0, i = 0, 1, . . . ,B − l . Moreover, according to the complementary slackness

condition,

µi (vl+i+1B − y
l+i∑
j=1

vj ) = 0, i = 0, 1, . . . ,B − l .
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This implies that the following equations always hold:

vl+i+1B − y
l+i∑
j=1

vj = 0, i = 0, 1, . . . ,B − l .

Mathematically, this can be rewritten as

vl+i+1B
l+i∑
j=1

vj

= y, i = 0, 1, . . . ,B − l .

This completes the proof. □

A.2 Proof of Corollary 4.6
Proof. For the fractional case, a packet can be equally divided into arbitrarily small units. Here

n is a large number. Specifically, we divide a packet into n units. Let the threshold-based policy set a

threshold value for each unit of packet. Then by optimizing the threshold values and setting the

first step length l = αB, we attain a competitive ratio r satisfying(r + Bn
Bn

)Bn−αBn+1

−

(r + Bn
Bn

)Bn−αBn
−

θ

αBn
= 0.

Let n → ∞, we have

er (1−α ) =
θ

αr
. (18)

Equation (18) defines an implicit function of r with respect to α . By taking derivative, we have

that when α = 1/r , r takes the minimum value. Substituting α = 1/r to Equation (18) yields

r = lnθ + 1.

This also proves the optimality of the threshold-based online algorithm, as the competitive ratio

for the fractional case is lower bounded by lnθ + 1.

Assuming x is an real number that is not less than l , the threshold value to further admit packet

when the queue length is x , denoted by д(x ), is

д(x ) = αrm
( M

αrm

) (x−l )n
Bn−αBn

.

Let n → ∞ and replace r with lnθ + 1, we have

д(x ) =me (ln θ+1) xB −1.

□

A.3 Proof of Lemma 4.8
Proof. Here we only prove the nontrivial case where b ≥ l . Assume the initial queue length is

0 and at time slot tmax
, b

gOnAlg
ω (t ) reaches the maximum value during the time period [1,T ], i.e.,

b
gOnAlg
ω (tmax) = b. We consider a special worst instance where there is no packet delivered during

[1, tmax
] and no packet buffered by gOnAlg during [tmax + 1,T ]. In this case, we have the following

claimed results:

(1) The profit earned by gOnAlg is at least
∑b

i=1
vi . This is due to the fact that the investigated

online algorithm is defined by a non-decreasing threshold values. It is easy to see that the

minimum profit earned by gOnAlg is
∑b

i=1
vi when the queue length increases from 0 to b.
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(2) The profit by OPT is at mostvb+1B +
∑b

i=l+1
vi . As analyzed in the proof for Lemma 4.2, there

is no packet with value larger than or equal to vb+1 during [1,T ]. So under the worst case,

OPT will definitely buffer B packets with the value of vb+1 − δ where δ is an arbitrarily small

positive value. This happens only when b
gOnAlg
ω (t ) reaches b. Because we assume there are

no packets delivered during [1, tmax
], thus OPT will not buffer packet before tmax

. After OPT
buffers B packets with valuevb+1 −δ , the number of packets further buffered by OPT before t

(t > tmax
) will not be larger than b minus the queue length under gOnAlg, i.e., b − bgOnAlgω (t ),

since there are no packets buffered by gOnAlg during [tmax + 1,T ] as assumed. The packet

value will not be larger than the threshold of gOnAlg, so the maximum profit earned by OPT
during the time period when b

gOnAlg
ω (t ) goes back to 0 from b is not larger than

∑b
i=l+1

vi .
Concluding the above, we can get that the maximum profit by OPT during [1,T ] will not be

larger than vb+1B +
∑b

i=l+1
vi .

Based on the above analysis, we know that the maximum profit ratio of OPT and gOnAlg when

there is no packet delivered during [1, tmax
] and no packet buffered during [tmax + 1,T ] is at most(

vb+1B +
b∑

i=l+1

vi

)
/

(
b∑
i=1

vi

)
. Actually, this ratio can be approximately realized by the input instance

in Eq. (19) (also shown in Figure 5).

[(v1, 0)×l , (v2, 0), . . . , (vb , 0), (vb+1−δ , 0)×B, (vb−δ , 1), (vb−1−δ , 1), . . . , (vl+1−δ , 1)︸                                                                    ︷︷                                                                    ︸
The time slots that OPT selects to buffer.

].
(19)

B0

m

M

1( ,0)v l´

( ,0) 1iv ´

1( ,0)bv Bd+ - ´

( ,1) 1iv d- ´

2( ,1) 1v d- ´

Fig. 5. The constructed worst case.

B

0 tmaxtDec,begt Dec,endt Dec,rect

( )b t

b

Fig. 6. The delivery time period.

0
tmaxt Inc,rect Inc,begt Inc,endt T

B
( )b t

b

Fig. 7. The buffering time period.

For the case of allowing packet delivery during [1, tmax
] or packet buffering during [tmax + 1,T ],

we have the following analysis:

(1) Assume under the worst case ω, there is a time period [tDec,beg, tDec,end] ∈ [1, tmax
] when

b
gOnAlg
ω (t ) keeps decreasing or unchanged due to the packet delivery. Without loss of gener-

ality, we assume [tDec,beg, tDec,end] is the time period of which the beginning queue length

b
gOnAlg
ω (tDec,beg) (for simplicity, we denote b

gOnAlg
ω (tDec,beg) as bDec) is the largest among de-

creasing periods, and assume at time slot tDec,rec, the queue length returns to bDec. For details
of the above instance, readers can also refer to Figure 6. Because there’s no time period

with packet delivery after tDec,rec and OPT will definitely empty the buffer before the queue

length under gOnAlg reaches the maximum, thus bOPTω (tRec) = 0 must hold. Further, there’s

no packet of value larger than д(bDec) before tDec,beg, so we have bOPTω (tDec,beg − 1) = 0 for

some worst case. From the above analysis, we have that the queue length of gOnAlg and

OPT at tDec,rec will both return to the state at tDec,beg. Then under some particular worst

case, the profit ratio during [tDec,beg, tDec,rec] must be larger than crb (gOnAlg) (otherwise,
we just “delete” the input segment during [tDec,beg, tDec,rec], and this will not decrease the

profit ratio). Moreover, the adversary can repeat the input instance during [tDec,beg, tDec,rec]
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for arbitrary times, since the queue length of OPT and gOnAlg both go back to the state at

tDec,beg. Assume the input instance during [1, tDec,beg − 1] isω1, and the input instance during

[tDec,beg, tDec,rec] isω2, we can construct the input instanceω1 +ω2 × j + [(m),B] which lies

in subset Ω
gOnAlg
bDec . When j is large enough, we can get a larger local competitive ratio than

crb (gOnAlg), i.e.,

crb (gOnAlg) < crbDec (gOnAlg), bDec < b .

In conclusion, the above analysis implies that when crb (gOnAlg) ≥ crb′ (gOnAlg) for b ′ < b,
there will be no packets delivered during [1, tmax

].

(2) Assume under the worst caseω, there is a time period [t Inc,beg, t Inc,end] when b
gOnAlg
ω (t ) keeps

increasing or unchanged due to the packet buffering. Similar to the analysis in (1), we can

also find the buffering time period with the largest ending queue length as shown in Figure

7. We can also deduce that the buffer at time t Inc,rec and t Inc,end must be full, since there will

be no packet of value larger than д(b
gOnAlg
ω (t Inc,beg)) or д(b

gOnAlg
ω (t Inc,rec)) afterwards. Thus

under the worst case, the profit ratio during [t Inc,rec, t Inc,end] is larger than cr
Ω
gOnAlg
b

(gOnAlg).

Then we can construct a case similar to (1) and prove that there is a subset whose local

competitive ratio is larger than that of Ω
gOnAlg
b . At last, we can get that no packets buffered

during [tmax + 1,T ] when crb (gOnAlg) ≥ crb′ (gOnAlg) for b ′ > b.

Concluding (1) and (2), we can prove that when crb (gOnAlg) ≥ crb′ (gOnAlg), b ′ > b, there is
no packet delivered during [1, tmax

] and no packet buffered during [tmax + 1,T ] under the worst

case. In this case, the worst input instance should be as shown in Figure 5, and the corresponding

competitive ratio is

crb (gOnAlg) =
vb+1B +

b∑
i=l+1

vi

b∑
i=1

vi

.

This completes the proof. □

A.4 Proof of Lemma 4.9
Proof. Given the length of the first step is l , optimizing the threshold values of cr(gOnAlg) is

equivalent to solving the following problem:

min y

s.t. y ≥

(
vb+1B +

b∑
i=l+1

vi

)
/

(
ml +

b∑
i=l+1

vi

)
, b = l , l + 1, . . . ,B.

var y, m ≤ vi ≤ M, i = l + 1, l + 2, . . . ,B.

The vector of variables is [y,vl+1,vl+2, . . . ,vB]. By partially dualizing on the first set of nonequal-

ity constraints, we obtain the following Lagrangian function:

L(y,v, µ) = y +
B−l∑
i=0

µi



*.
,
vl+i+1B +

l+i∑
j=l+1

vj
+/
-
− y *.

,
ml +

l+i∑
j=l+1

vj
+/
-


,

where µi , i = 0, 1, · · · ,B − l are the dual variables associated with the non-equality constraints.
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The first-order optimality necessary condition can be expressed as

1 −
B−l∑
i=0

µi *
,
ml +

l+i∑
j=l+1

vj+
-
= 0,

µiB + (1 − y)
B−l∑
k=i+1

µk = 0, i = 0, 1, . . . ,B − l − 1.

Note thatm ≤ vj ≤ M for j = l + 1, l + 2, . . . ,B − 1. Note also that y is equal to cr(gOnAlg),
so definitely, we have 1 − y < 0. Combining the above equations, we establish the result that

µi > 0, i = 0, 1, . . . ,B − l . Moreover, according to the complementary slackness condition

µi



*.
,
vl+i+1B +

l+i∑
j=l+1

vj
+/
-
− y *.

,
ml +

l+i∑
j=l+1

vj
+/
-


= 0, i = 0, 1, . . . ,B − l ,

the following equations hold:

*.
,
vl+i+1B +

l+i∑
j=l+1

vj
+/
-
− y *.

,
ml +

l+i∑
j=l+1

vj
+/
-
= 0, i = 0, 1, . . . ,B − l .

Alternatively, theses equations can be rewritten as

vl+i+1B +
l+i∑
j=l+1

vj

ml +
l+i∑
j=l+1

vj

= y, i = 0, 1, . . . ,B − l .

This completes the proof. □
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