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ABSTRACT
�is paper proposes online o�ering strategies for a storage-assisted

renewable power producer that participates in hour-ahead electric-

ity market. �e online strategy determines the o�ering price and

volume, while no exact or stochastic future information is avail-

able in a time-coupled se�ing in the presence of the storage. �e

proposed online strategy achieves the best possible competitive

ratio of O (logθ ), where θ is the ratio between the maximum and

minimum clearing prices. Trace-driven experiments demonstrate

that the proposed strategy achieves close-to-optimal performance.
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1 INTRODUCTION
In this paper, we consider a scenario in which a Storage-assisted Re-

newable GENeration COmpany (srGENCO), like other traditional

generation companies, participates in hour-ahead electricity mar-

ket by submi�ing its o�er. A�er receiving the o�ers, the market

operator matches the o�ers with the bids from the demand-side

and determines a clearing price. If the o�ering price of srGENCO is

less than the clearing price, its o�ering volume is considered as the

commitment to the market for the next hour. Fig. 1 demonstrates
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the scenario in this paper. �is work focuses on designing pro�t

maximizing o�ering strategies, i.e., the strategies that, with the goal

of maximizing the pro�t, determine the o�ering price and volume,

for srGENCO that participates in hour-ahead market.
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Figure 1: �e scenario

Finding pro�t maximization o�ering strategy for a renewable

producer without storage is nontrivial due to the inherent uncer-

tainty of the renewables and dynamics in the market clearing price.

In the presence of storage, the o�ering strategy is even more chal-

lenging because of the additional design space enabled by the stor-

age. More speci�cally, srGENCO can use the storage absorb the

uncertainty of renewables and to compensate for the slots that the

renewable output cannot ful�ll the commitment. However, the stor-

age provides another economic advantage. �at is, it can shi� the

energy through absorbing the renewable output during low price

periods, and then discharging during high price periods. In this

way, designing pro�t maximization o�ering strategy in the pres-

ence of storage comes with wider design space than those without

the storage and potentially can bring more pro�t for srGENCO.

We formulate an optimization problemwith the objective of max-

imizing the long-term pro�t of srGENCO. �e future inputs to the

problem, i.e., the renewable output and the clearing price, however,

are unknown for srGENCOwhen submi�ing o�er. �is emphasizes

the need for online solution design which is challenging, since the

problem is coupled across time due to the evolution of the storage.

We note that some similar problems have been studied in literature

using stochastic optimization approaches [1], however, the solution

approach in this paper is di�erent since it has no assumption on

the stochastic modeling of the future input. Our work could be

considered as an extension of conversion problems [3].

Contribution. We propose sO�er, a simple online o�ering strat-

egy, in which the o�ering strategy is designed using a piecewise

exponential/constant function of the renewable output and the

current storage level. �e sO�er achieves the best possible compet-

itive ratio of O (logθ ), where θ is the ratio between the maximum

and minimum clearing prices. We refer to the full version of this

paper [4] for detailed explanation.
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Figure 2: Calculating x (t ) when p (t ) > p̂ (t ).

2 MODEL AND PROBLEM FORMULATION
We consider a time-slo�ed model, such that the time horizon T is

chopped into multiple slots with equal length, e.g., 1 hour. Shortly

before slot t , srGENCO along with other participants submits its

o�er, for the next slot. We assume that srGENCO knows the values

of market clearing price pmin ≤ p (t ) ≤ pmax and renewable output

u (t ) ≥ 0 for the coming slot. Extensions to the case in which

neither clearing price nor renewable output is not known is given

in [4]. Di�erent from [1], we do not have any assumptions on the

stochastic modeling of clearing price and renewable output beyond

the coming slot. Since it is assumed that the clearing price is known,

by o�ering strategy we mean the way that srGENCO determines

its o�ering (commitment) volume, denoted as x (t ) ≥ 0.

Storage Model: We denote the maximum capacity of storage

system of srGENCO byC and let ρc and ρd be its maximum charg-

ing and discharge rates, respectively. In addition, let z (t ) ∈ [0,C]
be the storage level at the beginning of slot t . Given the renewable

output u (t ) and the commitment volume x (t ), the evolution of the

storage level of srGENCO is given by

z (t + 1) =
[
z (t ) + xc (t ) − xd (t )

]

C
,

wherexc (t ) = min

{
ρc ,

[
u (t )−x (t )

]+}
andxd (t ) = min

{
ρd ,

[
x (t )−

u (t )
]+}

are the charging and discharging amounts of the storage

at slot t . Moreover, [.]+ and [.]C de�ne the projections onto the

positive orthant and set C = [0,C], respectively.
Now, we cast the simpli�ed o�ering strategy problem sOSP as

sOSP max

∑
t ∈T

p (t )x (t )

s.t. x (t ) ≤ min{z (t ), ρd } + u (t ),

z (t + 1) =
[
z (t ) + xc (t ) − xd (t )

]

C
,

var : x (t ) ≥ 0, t ∈ T ,

where the �rst constraint ensures that the feasibility of o�ering

amount. �e second constraint involves the evolution of the storage.

3 ALGORITHM DESIGN
We design our algorithm following an adaptive threshold-based

strategy, where the algorithm adaptively changes the o�ering vol-

ume based on the current storage level and the clearing price. �e

main idea is to construct a function д(z) : [0,C] → [pmin,pmax].

�e input to function д(·) is the aggregation of the incoming renew-

able supply u (t ) and the current storage level z (t ), projected into

the capacity of the storage. Given function д(z) the strategy works

as follows. It �rst calculates p̂ (t ) = д(z+ (t )) as the candidate of-
fering price for z+ (t ) = min [z (t ) +min{u (t ), ρc }]C as the storage

level a�er absorbing renewable output. Since srGENCO knows the

cleating price p (t ) it can �nds the o�ering volume x (t ) as follows:
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Figure 3: Competitive ratio as a function of price volatility

x (t ) =



[u (t ) − ρc ]
+, if p̂ (t ) > p (t ),

z (t ) + u (t ) −min{cth, z (t ) + ρc }, if p̂ (t )=p (t )=pmin,

z (t ) + u (t ) −min{д̂−1 (p (t )), z (t ) + ρc }, if p̂ (t )<p (t ),

An illustration of how o�ering volume is calculated is shown in

Fig. 2. �e following theorem characterizes the optimal function

д(·) that leads to the best possible competitive ratio, for sO�er as
the strategy that determines the o�ering volume as above.

Theorem 3.1. By se�ing д(z) as

д(z) =



pmine
(c th−z )c th

C (C−c th ) if z ≤ cth,

pmin z ≥ cth.
(1)

where cth is

cth = C −
(2 + logθ )C −

√
log

2 θ + 4 logθC

2

> 0, (2)

and θ = pmax/pmin. In addition,

cr(sO�er) =
(2 + logθ ) +

√
log

2 θ + 4 logθ

2

. (3)

4 SIMULATIONS
Using data from PJM energy market, we evaluate the performance

of our algorithm in Fig. 3. We measure the empirical competitive

ratio of FixedOnline [2], that determines the o�ering volume based

on a �xed threshold, and gO�er (the general version of sO�er
where neither clearing price nor renewable output are known [4]),

and show the theoretical competitive ratio. �e result depicts that

(i) gO�er is robust to price �uctuation; (ii) gO�er is superior to
FixedOnline; (iii) it works much be�er than theoretical bound.
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