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Abstract— In deadline-constrained wireless sensor net-
works (WSNs), the quality of aggregation (QOA) is determined
by the number of participating nodes in the data aggregation
process. The previous studies have attempted to propose optimal
scheduling algorithms to obtain the maximum QOA assuming a
fixed underlying aggregation tree. However, there exists no prior
work to address the issue of constructing optimal aggregation
tree in deadline-constraints WSNs. The structure of underlying
aggregation tree is important since our analysis demonstrates
that the ratio between the maximum achievable QOAs of
different trees could be as large as O(2D), where D is the
deadline. This paper casts a combinatorial optimization problem
to address the optimal tree construction for deadline-constrained
data aggregation in WSNs. While the problem is proved to be
NP-hard, we employ the Markov approximation framework and
devise two distributed algorithms with different computation
overheads to find close-to-optimal solution with bounded
approximation gap. To further improve the convergence of
the Markov-based algorithms, we devise another initial tree
construction algorithm with low-computational complexity. Our
experimental results from a set of randomly-generated scenarios
demonstrate that the proposed algorithms achieve near optimal
performance and appreciably outperform methods that work
on a fixed aggregation tree by obtaining better quality of
aggregation.

Index Terms— Deadline-constrained wireless sensor networks,
tree construction, data aggregation, network combinatorial
optimization, Markov approximation.

I. INTRODUCTION

A. Motivation

NOWADAYS, monitoring and tracking applications are
intrinsically intertwined with a plethora of wireless

sensor networks. Data gathering has been considered as a
fundamental operation in such applications. In data gathering,
limited battery of sensors emphasizes the need for energy-
aware data gathering design. However, packet transmission as
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the major source of energy depletion turns energy conservation
in data gathering into an acute problem [2].

To reduce the energy depletion of the sensors due to
excessive packet transmission, data aggregation [2]–[6] has
been proposed as a promising energy conservation mechanism
to eliminate the necessity of redundant transmission. In a
typical data aggregation scenario, a data aggregation tree
is constructed over the underlying WSN topology [5] and
some intermediate nodes are solicited to aggregate/fuse the
gathered data of different sensors by in-network computation
and transmit a single packet to the next hop. In this way, the
amount of packet transmission is significantly reduced, and
hence the overall energy consumption decreases.

Despite the apparent benefits of data aggregation in reducing
overall energy usage, it can impose additional delay since the
intermediate nodes in aggregation tree must wait to gather
sufficient data from the predecessors and then aggregate and
forward it to the next hop. This additional delay might be
intolerable in many real-time surveillance applications that are
sensitive to the latency of the receiving data [7]. For example,
in target tracking application, the detected location of a moving
object may exhibit perceptible error with the actual location if
data aggregation process takes too long [8]. Thus, the imposed
delay of a data aggregation algorithm must be considered in an
efficient design so as to respect the deadline of the application.

Some previous researches have considered participation of
all sensor nodes in data aggregation and aimed to minimize
the aggregation delay as the objective [9], [10]. However,
participation of all sensor nodes introduces severe interference
and may lead to terminating data aggregation in a time that is
beyond the application’s tolerable delay even though the goal
is to minimize the delay. Consequently, these designs fail to
guarantee a maximum application-specific tolerable deadline.

B. Deadline-Constrained Data Aggregation: Scenario and
Challenges

As a promising alternative, the idea of deadline-constrained
data aggregation has been advocated in the recent stud-
ies [5], [11]. The general idea is to incorporate a maximum
application-specific tolerable delay, namely deadline, as a
hard constraint, and try to improve the Quality of Aggrega-
tion (QOA) by increasing the number of participating sensor
nodes in data aggregation without missing the deadline. Sub-
sequently, the problem turns into maximizing QOA, subject to
the application-specific deadline constraint [5], [11]. Toward
this goal, the following two critical challenges should be
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addressed appropriately: 1) the scheduling policy, and 2) the
structure of aggregation tree.

1) Scheduling Policy: Delay in data aggregation is origi-
nated from two sources: (i) waiting time to gather the data
of predecessor nodes in data aggregation tree, and (ii) waiting
time due to the interference issue which is an inherent chal-
lenge in wireless networks. If overall waiting time of a node
exceeds a specific value, its data cannot be delivered to the sink
before the deadline. Devising an efficient policy that schedules
the nodes’ waiting time while preventing degradation of the
QOA and meeting the deadline constraint of the application
is a challenging problem. The previous research has tried to
find an efficient scheduling such that QOA is maximized [5].
The details are explained in Section II and Appendix.

2) Structure of Aggregation Tree: The structure of data
aggregation tree is another important factor. The number
of participant nodes in data aggregation could be further
improved by constructing a proper data aggregation tree.
Without constructing an appropriate aggregation tree, we may
not be able to achieve a desired level of QOA even by
designing the scheduling algorithm optimally.

The scheduling problem that takes a given tree as input
and finds the maximum QOA for the given tree, has been
investigated in previous studies [5], [11], under tree topology
and one-hop interference mode. We show that the structure
of the underlying aggregation tree plays an important role in
QOA. Consequently, the ultimate optimal design cannot be
fully achieved without taking this critical issue into account.
Motivated by this fact, the goal of this paper is to study the
problem of constructing an optimal underlying data aggrega-
tion tree in a graph topology and under protocol interference
model [12].

C. Summary of Contributions

In this paper, we formulate the problem of maximizing QOA
in deadline-constrained WSNs under protocol interference
model and aim to develop a tree construction and schedul-
ing algorithm to maximize QOA. However, constructing the
optimal aggregation tree over a general topology is a network
combinatorial problem which is nontrivial even in centralized
manner. This is more problematic when we seek an appropriate
solution amenable to distributed realization so as the sensor
nodes choose their parents (in data aggregation tree) just using
local information. We tackle this problem in single-sink WSNs
setting through the following contributions:

• We investigate the impact of data aggregation tree struc-
ture on QOA by theoretical analysis and explanatory
example. We show that the ratio between the maximum
achievable QoAs of two data aggregation trees is O(2D)
in the worst case where D is the aggregation deadline.
This observation makes the problem of constructing max-
imum QOA tree intriguing. Besides, we prove that the
problem of optimal tree construction belongs to the class
of NP-hard problems.

• After formulating the underlying tree construction prob-
lem, we leverage Markov approximation framework [13]
as a general framework toward solving combinatorial

network problems in distributed fashion. By addressing
the unique challenges of our problem, we devise two
close-to-optimal algorithms in which the sensor nodes
contribute to migrating toward a near optimal tree in
an iterative and distributed manner. The highlights are
bounded approximation gap, and robustness against the
error of global estimation of WSN by local information.

• To further improve QOA and convergence of
Markov-based algorithms, we propose an initial tree
construction algorithm, called FastInitTree, as the initial-
ization step of the main algorithm. The algorithm features
low computational complexity and close-to-optimal
estimate for the initial tree construction, i.e., the QOA
obtained by initial tree constructed by FastInitTree is
close to the QOA achieved when the main algorithm
converges. We analyze the validity of constructed trees
when the deadline value is changed and prove that for
the cases that the deadline decreases there is no need to
executed the algorithms again and construct a new tree.

• Through experiments, we evaluate the performance of the
proposed algorithms by comparing them to the optimum
and the case with fixed aggregation tree. Obtained
results demonstrate that four presented algorithms are
near-optimal and greatly increase the QOA compared to
the method that merely uses random tree to find optimal
scheduling without optimal tree construction.

D. Paper Organization

The rest of this paper is organized as follows. We review
the related work in Section II. In Section III, the system
model is introduced and by motivating examples and theo-
retical analysis, the impact of aggregation tree on QOA is
investigated. Problem formulation and NP-hardness analysis
are explained in Section IV. In Section V, we devise two
distributed algorithms for the problem. In Section VI, we
explain our tree initialization algorithm. Simulation results
are described in Section VII. Finally, concluding remarks and
future directions are mentioned in Section VIII.

II. RELATED WORK

A. Minimum Delay and Deadline-Constrained Aggregation

The problem of minimum delay data aggregation has been
tackled intensively in the literature. In [14], it is proved that the
minimum latency aggregation scheduling problem is NP-hard
and a (� − 1)-approximation algorithm has been presented
where � is the maximum node degree in the network. The
current best approximation algorithms in [10] and [15] achieve
an upper bound of O(� + R) on data aggregation delay
where R is the network radius. While most studies consider
a protocol interference model, the studies in [9] and [16]
assume a physical interference model that is more practical
than the former. In [16], a scheduling algorithm for tree-
based data aggregation is designed that achieves a constant
approximation ratio by bounding the delay at O(�+ R). The
work is extended in [9] for any arbitrary network topology.
A connected dominating set or maximum independent sets are
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employed in [17] to provide a latency bound of 4R′ + 2�− 2
where R′ is inferior network radius.

Within the context of deadline-constrained data aggregation
models, the goal is not to minimize the delay as an objective
of the problem. Rather, the objective is to maximize the
number of sensor nodes participating in aggregation while
respecting the application-specific deadline. This type of real-
time data aggregation has recently gained attention in several
works [5], [8], [11], [18], [19]. In this regard, [5] presented a
polynomial time optimal algorithm for the problem under the
deadline and one-hop interference constraints. The problem
is extended in [8] for a network with unreliable links under
an additional constraint on nodes’ energy level. In [8], the
authors proved that in a network with V nodes, the problem
is NP-hard when the maximum node degree of the aggregation
tree is �. They proposed a polynomial-time exact algorithm
when � = O(log V ). In [11], the authors considered the
same problem of [5] by taking into account the effect of
data redundancy and spatial dispersion of the participants
in the quality of final aggregation result and proposed an
approximate solution for proved NP-hard problem. In a more
general case, [19] tackles the utility maximization problem
in deadline constrained data aggregation and collection then
provides efficient approximation solutions. A main drawback
of the aforementioned studies is that they all have tried
to maximize the quality of data aggregation on a given
tree and neglect the impact of the data aggregation tree
structure.

B. Optimum Aggregation Tree Construction

Several studies have tackled the problem of construct-
ing optimal data aggregation tree [20]–[25] where all have
been shown to be NP-hard. The study in [22] considers a
sensor network composed of source and non-source nodes.
Then, the problem is to construct an aggregation tree such
that the minimum number of non-source nodes included.
In [23], the problem of maximum lifetime aggregation tree
is studied for single sink WSNs. The problem is extended for
multi-sink WSNs in [21]. Also, [24] studies the problem in
large scale WSNs. The problem of constructing an aggregation
tree in order to minimize total energy cost is addressed in [25].
As solution, a constant factor approximation algorithm is
proposed. In [20], the problem of constructing a minimum cost
aggregation tree under Information Quality (IQ) constraint has
been tackled. The authors considered event-detection WSNs
and defined IQ as detection accuracy. [26] shows that for the
shortest path trees, the problem of building maximum lifetime
data aggregation tree can be solved in polynomial time and
propose two centralized and distributed algorithms. In this
paper, we target the construction of maximum quality aggre-
gation tree under deadline constraint that has been overlooked
in the previous studies.

Moreover, while Markov approximation framework has
been used in different applications such as in P2P stream-
ing [27] and multimedia networking [28], this work is the first
that applies the framework in wireless sensor network. In this
way, our solution method is completely different from the

TABLE I

SUMMARY OF KEY NOTATIONS

previous studies and can be considered as a potential solution
for the same category of problems.

III. SYSTEM MODEL AND PROBLEM MOTIVATION

A. WSN System Model

Consider a WSN whose topology is a graph
G = (V ∪ {S}, ξ) where S is the sink node, V is the set
of sensor nodes with |V| = V , and ξ is the set of links
between sensor nodes. We assume that all nodes have a fixed
communication range of RC and (i, j) ∈ ξ if nodes i and j
are adjacent, i.e., they are in the communication range of
each other, i.e., d(i, j) ≤ RC . Without loss of generality, we
assume that each link has a unit capacity. We suppose that the
system is time-slotted and synchronized and a transmission
takes exactly one time slot. In deadline-constrained scenario,
the data has to be received by the sink by the end of at
most D time slots, where the value of D is specified by
the deadline requirement of the applications. We adopt the
general protocol interference model [12] where at any time
slot t, t = 0, . . . , D − 1 transmission over link m ∈ E with
mo and md as sender and receiver nodes is successful if for
each link l ∈ L\{m} with sender lo and receiver ld we have

d(lo,md ) ≥ (1+ δ)d(mo,md ) and d(mo,md) ≤ RC , (1)

where L is set of active links at time slot t , δ is a positive
constant, and RC is the communication range of nodes.

Under the described system model, the data aggregation
is carried out by running a scheduling algorithm over a
constructed spanning tree ψ ∈ T (G) on top of the underlying
WSN topology where T (G) is the set of all spanning trees
in graph G. The scheduling algorithm outputs a feasible
scheduling on the aggregation tree. Specially, the algorithm
provides interference-free transmissions according to the spec-
ified protocol interference model. The authors in [5] proposed
a scheduling algorithm for tree topology under a simpli-
fied interference model namely one-hop where transmissions
over two links interferes if they have a node in common.
In Section V-C we extend this algorithm to work on graph
topology and with protocol interference model.

Let Hψ(i) ⊆ V be the set that consists of node i and all
its predecessors (except the sink) in aggregation tree ψ .
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Fig. 1. Impact of aggregation tree structure on the maximum QOA. At each slot t, t = 0, . . . , D − 1, all nodes having waiting time t send their data in
parallel (e.g., in Fig. 1a, nodes {2, 9} at t = 0, {10, 7} at t = 1, {11, 2} at t = 3, and {4} at t = 4). (a) Long tree: QOA = 7. (b) Random tree: QOA = 9.
(c) Optimal tree: QOA = 11.

We consider two types of nodes, source nodes and relay
nodes. Source nodes can sense their own data and for-
ward/aggregate the other nodes’ data. Relay nodes just for-
ward/aggregate the data of other nodes. To illustrate this, we
use binary variable Fi , where Fi = 1, if node i is a source
and Fi = 0, otherwise. Moreover, we define binary variable
nψi where nψi = 1 indicates that node i in tree ψ is allowed to
send data to its parent denoted by Pi and, �nψ = [nψi , i ∈ V].
Indeed, nψi = 1 indicates that node i participates in data
aggregation. In this case, if Fi = 1 then node i is a source
participant, otherwise node i participates in data aggregation
as a relay node, i.e., it just aggregates the received data from
its successors and forwards to its parent.

Let Vψleaf ⊆ V be the set of all leaf nodes and Vψsel-src ⊆ V
be the set of source nodes selected for data aggregation
in tree ψ . Indeed, i ∈ Vψsel-src, if i is a source and
all of its predecessors are selected for aggregation, i.e.,
Vψsel-src =

{
i ∈ V : Fi = 1 and

∏
j∈Hψ(i) nψj = 1

}
.

To devise a feasible aggregation scheme, we assign a wait-
ing time of Wψ

i , 0 ≤ Wψ
i ≤ D time slots to each participant

node i in aggregation tree ψ and �Wψ = [Wψ
i , i ∈ V]. When

we run a deterministic scheduling algorithm over aggregation
tree ψ with parameter D, �Wψ denotes the assigned waiting
times and QOA(ψ, �Wψ , D) determines quality of aggregation
which is equal to the number of source participant nodes in
data aggregation, i.e.,

QOA(ψ, �Wψ , D) = |Vψsel-src| =
∑
i∈V

Fi

∏

j∈Hψ(i)

nψj . (2)

For notational convenience, we define QOA(ψi , �Wψ, D) as
QOA of sub-tree ψi of tree ψ rooted at node i . Hereafter, we
use QOA and Wi as a brief notations of QOA(ψ, �Wψ, D) and
Wψ

i when the corresponding tree and scheduling are obvious,
or a specific tree or scheduling is not the matter of concern.
The summary of notations are listed in Table I.

B. The Impact of Aggregation Tree

First, note that the optimal aggregation does not follow
any particular pattern. For example, chain-like long trees are
not proper structure for data aggregation trees. The reason is

that when sink imposes a deadline D, all nodes with height
greater than D cannot participate in data aggregation due
to the delay constraint. Consequently, the height of the tree
is limited to D and long trees cannot be proper structures.
Instead, one might suggest a tree so as the height of the
majority of nodes is less than D. However, the waiting time
of a node with height h is upper bounded by D − h and
hence it can choose at most D − h children of itself as the
participants. Hence, the others together with their successors
are ignored. Thus, same as the long tree, a star-like fat tree
may yield a non-optimal QOA. Generally, an aggregation
tree which is neither so long nor so fat is suitable. Note
that the above observations cannot bring significant insights
to devise an algorithm to construct the optimal tree. In the
next example, we demonstrate that maximum QOA of two
aggregation trees of a same network can be different even
using optimal scheduling policy. For details on the scheduling
policy we refer the reader to Appendix.

Example 1 (The Impact of Aggregation Tree on Maximum
Achievable QOA): Fig. 1 illustrates the maximum achievable
QOA of three different data aggregation trees given a fixed
underlying WSN topology. Fig. 1a is an example of long tree.
With sink deadline 4, at most one node in height 4 of
aggregation tree can participate in data aggregation. That is,
just one of the nodes 3 and 9, both with height 4, can
participate in the aggregation. Moreover, the set of nodes
{5, 6, 8} are in a distance greater than D and there is no way
to participate them. In other words, this particular long tree
structure already has no way to participate at least 4 nodes
in aggregation process. Using exhaustive search, it turns out
that the maximum QOA of tree in Fig. 1a is 7. Fig. 1b shows
a random tree with the maximum QOA of 9. Finally, the
optimal data aggregation tree is shown in Fig. 1c where all
nodes are participants. The optimal tree in this toy example
is obtained by trial and error. We emphasize that finding
the optimal aggregation tree is not straightforward even in
our tractable topology with only 12 nodes, while in practice
the scale of the network is much larger than that of this
example.

Theorem 1: For an imposed deadline D where all nodes
are source, the maximum values of QOA in the optimal tree
and worst-case tree are 2D − 1 and D, respectively.
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Proof: It is proved in [11] that under one-hop interference
model, QOA is bounded to 2D−1 regardless of the aggregation
tree structure. Note that the bound is valid also when using
protocol interference model since the protocol model covers
all interference identified by one-hop model. Therefore, by
switching to the protocol model, the QOA cannot be increased.
The QOA achieves this bound when the network graph is
dense enough where an obvious case is a complete graph (for
more details, refer to Section VI). Therefore, we proceed to
calculate the upper bound in the worst case. Indeed, the worst
case occurs when we construct a chain-like tree with sink as
the head of the chain. Observe that for a node i , |Hψ(i)| is
equal to the hop distance of i to the sink in aggregation tree ψ .
In a chain tree, there is only one possible way of scheduling
where each node i having the property |Hψ(i)| ≤ D assigned
a waiting time of D − |Hψ(i)| and is a participant. There
are D such nodes and the maximum QOA of the tree is D.

�
The motivating example and Theorem 1 confirm that the

structure of aggregation tree plays an important role on the
final QOA. In the next section, we formulate the optimal
aggregation tree construction as an optimization problem.

IV. PROBLEM FORMULATION

We formulate the problem of maximizing QOA in a graph
topology and under the specified protocol interference model
in Section III-A as Tree Construction and Scheduling Prob-
lem (TCSP) as below:

TCSP : max
ψ, �Wψ

QOA(ψ, �Wψ , D)

s.t. ∀(i, j, k, l) ∈
{
(i, j, k, l) : (i, j), (k, l)

∈ ξψ , j = Pi , l = Pk , l 
= j,Wψ
i = Wψ

k

}

d(i, l) ≥ (1+ δ)RC , d(i, j) ≤ RC , (3a)

Wψ
i ∈ {0, 1,…, D − 1}, ∀i ∈ V, (3b)

Wψ
S = D, (3c)

nψi ∈ {0, 1}, ∀i ∈ V, (3d)

ψ ∈ T (G). (3e)

The goal is to maximize QOA by choosing the right aggrega-
tion tree ψ and scheduling (assigning waiting times to nodes).
Constraint (3a) enforces the protocol interference model to
ensure that in any transmission i → j which is occurring
simultaneously with transmission k → l, i.e., Wψ

i = Wψ
k ,

the receiver node l is outside of node i ’s interference range.
Constraints (3b)-(3e) enforce the feasible set of waiting times
and spanning tree according to the definitions.

A. NP-Hardness

The problem of finding the optimal tree is hard to solve as
the number of trees in the network is extremely large in reality.
For example, in a complete network graph with V nodes and a
sink, the number of feasible trees is V V−2. We prove that the
TCSP is at least as hard as a variant of classical Maximum

Coverage Problem (MCP) called Maximum Coverage Prob-
lem with Group Budget Constraint (MCPG) which is known
to be NP-hard [29].

1) Maximum Coverage Problem: Given a collection of n
sets U = {S1, S2,…, Sn} and a number l, the goal of the MCP
is to form set U ′ by choosing at most l sets from U such that
the union of selected sets has the maximum cardinality:

MCP : max
U ′

∣∣∣∣∣∣
⋃

Si∈U ′
Si

∣∣∣∣∣∣
, s.t. U ′ ⊆ U,

∣∣U ′∣∣ ≤ l.

2) Maximum Coverage Problem With Group Budget
Constraint: In [29], the MCPG is introduced as a general
case of the MCP. In the MCPG, n sets S1,…, Sn at the MCP
are partitioned to L groups G1,…,GL . The MCPG has two
versions namely cost and cardinality versions where the latter
is our interest. In the cardinality version of the MCPG, given
number l, we should select at most l sets from U such that
the cardinality of union of the selected sets is maximized.
Moreover, we are permitted to choose at most one set of each
group. The MCPG is clearly NP-hard because the MCP which
is known to be NP-hard [29] is a special case of the MCPG
where each set in U is considered as a group.

MCPG : max
U ′

∣∣∣∣∣∣
⋃

Si∈U ′
Si

∣∣∣∣∣∣
s.t. U ′ ⊆ U,

∣∣U ′∣∣ ≤ l,∣∣U ′ ∩ Gi
∣∣ ≤ 1,∀i ∈ {1,…, L}.

The similarity between our tree construction problem and the
MCPG is that in both cases the objective is to maximize the
cardinality. In the MCPG we can choose at most one set from
each group. Similarly, in the TCSP, each node can subscribe
(cover) different set of sensor nodes based on its deadline and
we are allowed to choose at most one set according to the
assigned deadline.

Theorem 2: The TCSP is NP-hard.
Proof: To prove, we reduce the MCPG to the TCSP

with a polynomial time algorithm. To this end, we construct
network graph G such that the sink is directly connected to L
non-source sensor nodes C1, . . . ,CL where L is the number
of groups in the MCPG. There are V other sensor nodes all
considered as source nodes connected to C1, . . . ,CL either
directly or indirectly where V is equal to the total number of
distinct elements in all groups. That is, V =∑L

i=1
∑|Gi |

j=1 |gi, j |
where |gi j | is the cardinality of j th set in group i and |Gi |
is the number of sets in group i . Then, we set the sink
deadline to D ≥ N where N is the total number of sets in L
groups, i.e., N = ∑L

i=1 |Gi |. We connect V sensor nodes to
C1, . . . ,CL and to each other such that if we assign a deadline
of D−((∑i−1

k=1 |Gk|)+ j−1) to the sink’s neighbor Ci , j th set
of Gi , 1 ≤ j ≤ |Gi | denotes the maximum cardinality set of
the sensor nodes who will participate in data aggregation as the
successors of Ci in a sub-tree rooted at this node in aggregation
tree. An optimal assignment of deadlines to C1, . . . ,CL is
equal to select at most one set from each group of the MCPG
where this optimal assignment results in maximizing both the
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number of participants in data aggregation tree as well as
the number of covered elements in the MCPG. Therefore,
a polynomial time optimal algorithm of the TCSP leads to a
polynomial solution of the MCPG which completes the proof.

�

V. MARKOV-BASED APPROXIMATE SOLUTION

Since the TCSP is NP-hard, it is not possible to devise
a computationally-efficient algorithm for the optimal solution
even in a centralized manner. As such, we pursue approxi-
mate solutions. Among different approximation methods, we
leverage Markov approximation framework [13] to propose an
efficient near-optimal solution for the problem. Generally, in
this framework the goal is to tackle combinatorial optimization
problems in distributed manner so as 1) to construct a class
of problem-specific Markov chains with a target steady-state
distribution and 2) to investigate a particular structure of
Markov chain that is amenable to distributed implementation.
We first begin with a brief primer of the theoretical approxi-
mation framework [13] in the next subsection.

A. Markov Approximation

As indicated in Table I, T (G) denotes the set of all possible
trees (configurations) of the network. For notational conve-
nience, let us define �D

ψ = QOA(ψ, �W∗ψ, D) under constraint

set in Equations (3b)-(3e) where �W∗ψ is the optimal scheduling
in tree ψ , i.e., when the network relies on aggregation tree
ψ ∈ T and sink deadline is D, the maximum data aggregation
quality is �D

ψ . Denote pψ as the fraction of time that data
aggregation tree ψ is used to accomplish data aggregation.
Using these notations we can rewrite the TCSP as follows:

TCSPeq : max
{pψ≥0,ψ∈T }

∑
ψ∈T

pψ�
D
ψ , s.t.

∑
ψ∈T

pψ = 1.

Note that the constraints in the TCSP are not appeared in
the TCSPeq because the value �D

ψ is obtained by respecting
the constraints in the TCSP. To derive a closed-form of the
optimal solution of the TCSPeq and to open new design space
for finding a distributed algorithm, we formulate the TCSPβ

as an approximate version of the TCSPeq using log-sum-exp
approximation [13]

TCSPβ : max
{pψ≥0,ψ∈T }

∑
ψ∈T

pψ�
D
ψ −

1

β

∑
ψ∈T

pψ log pψ

s.t.
∑
ψ∈T

pψ = 1,

where β is a large enough positive constant that con-
trols the accuracy of the approximation. The TCSPβ is an
approximate version of the TCSP off by an entropy term
− 1
β

∑
ψ∈T pψ log pψ and it is a convex optimization problem.

Hence, by solving KKT conditions its optimal solution is

p∗ψ =
exp

(
β�D

ψ

)
∑
ψ ′∈T exp

(
β�D

ψ ′
) , ψ ∈ T . (4)

Moreover, the optimal value is

�̂D
ψ = −

1

β
log

( ∑
ψ∈T

exp
(
β�D

ψ

))
. (5)

Finally, the approximation gap is characterized as:

|max
ψ∈T

�D
ψ − �̂D

ψ | ≤
1

β
log |T |, (6)

where the approximation gap approaches to zero as β
approaches to infinity. This means that with larger values of β
the approximation model is more accurate.

In the next step, we obtain the solution of the TCSPβ by
time-sharing among different data aggregation trees according
to p∗ψ in Equation (4). According to the basic framework, the
key is to investigate a well-structured and distributed-friendly
Markov chain whose stationary distribution is p∗ψ .

B. Markov Chain Design

We design a time-reversible Markov chain with states
space T and the stationary distribution p∗ψ . Then, we use
this Markov chain structure to hop (migrate) among different
states (trees) such that a tree with high QOA has more chances
to be visited by Markov random walks. The problem attains
its solution when the Markov chain converges to the ideal
steady-state distribution.

Given the Markov chain state space, the next step is to
construct the transition rate between two states. Let ψ,ψ ′ ∈ T
be two states of Markov chain and qψ,ψ ′ be the transition rate
from ψ to ψ ′. Herein, the theoretical framework enriches us by
two degrees of freedom. It turns out that the key in designing
distributed algorithms is to design a Markov chain such
that (i) the Markov chain is irreducible (i.e., any two states
are reachable from each other) and (ii) the detailed balance
equation is satisfied (i.e., p∗ψqψ,ψ ′ = p∗ψ ′qψ ′,ψ ,∀ψ,ψ ′ ∈ T ).
Consequently, it is allowed to set the transition rates between
any two states to be zero, i.e., remove their link in underlying
Markov chain, if they are still reachable from any other states.
We refer to [13] for further explanation.

In practice, however, direct transition between two states
means migration between two tree structures. To derive a
distributed algorithm, we only allow direct transitions between
two states if the current and the target trees can be transformed
to each other by only one parent changing operation in one of
the trees. Namely, two states ψ and ψ ′ are directly reachable
from each other if we can construct tree ψ ′ by deleting an
edge (i, j) ∈ ξ from ψ and adding edge (i, k) ∈ ξ to ψ . Now,
the next step is to set the transition rate as follows:

qψ,ψ ′ = 1

exp(α)

exp(β�D
ψ ′)

exp(β�D
ψ )+ exp(β�D

ψ ′)
, (7)

where α ≥ 0 is a constant and qψ ′,ψ is defined symmetrically.

C. Algorithm Design

Our goal is to realize a distributed implementation of the
Markov chain proposed in the previous section. In this part,
we detail our implementation.
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To compute transition rate between the states, the approxi-
mate values of maximum QoAs of both current (�D

ψ ) and the
target (�D

ψ ′ ) states (trees) are required. A scheduling algorithm
is designed in [5] to obtain maximum QOA. However, the
input for algorithm of [5] is a tree and they consider one-
hop interference model. Thus, the algorithm cannot be directly
used in our setting with general network topology. We extend
the algorithm in [5] namely “Waiting-Assignment” algorithm
(listed as Algorithm 2 and explained in Section V-C.2).

1) The Details of Parent-Changing Algorithm: Given ini-
tial aggregation tree ψ and deadline D, we first run
“Waiting-Assignment” algorithm to obtain an estimation
of �D

ψ . Then, based on the underlying Markov chain design
and in an iterative manner, we proceed to migrate to a target
aggregation tree ψ ′ with (probably) better �D

ψ ′ than �D
ψ .

To realize this end, each sensor node individually runs “Parent-
Changing” algorithm which is summarized as Algorithm 1.

Algorithm 1: “Parent-Changing” Algorithm for Node i ∈
V
Input: α, β
Output: New parent of node i

1 Pi ← parent of node i
2 N≥i ← { j : (i, j) ∈ ξ,W j ≥ Wi }
3 Node i generates a timer τi ∼ exp(λi ) with mean
λi = 1

|N≥i | and starts to count down

4 When τi expires, node i randomly selects one of its
neighbors P ′i ∈ N≥i .

5 �prev ← node i ’s estimation of �D
ψ in Equation (7), i.e.,

the maximum QOA of the current tree
6 Node i changes its parent to P ′i
7 �next← node i ’s estimation of �D

ψ ′ in Equation (7), i.e.,
the maximum QOA of the new tree

8 With probability qψ,ψ ′ , node i keeps the new tree
configuration and with probability 1− qψ,ψ ′ switches
back and connects to the previous parent Pi

9 if i changed its parent in Step 8 then
10 P ′i invokes Waiting-Assignment(P ′i ,WP ′i ) algorithm

on its sub-tree
11 Pi invokes Waiting-Assignment(Pi ,WPi ) algorithm on

its sub-tree
12 Node i refreshes the timer and begins counting down

The detailed description of Algorithm 1 is as follows.
In Line 3, an exponentially distributed random number with
mean λi = 1

|N≥i | is generated as the timer value. This setting

is required to ensure the convergence of the corresponding
Markov chain. In Line 4, node i selects a new parent P ′i such
that WP ′i ≥ Wi . This ensures that after the parent changing,
the data structure still remains a tree since the new structure
is not a tree only if node i chooses its new parent from its
successors where all have a less waiting time than node i ’s
waiting time. Meanwhile, this strategy is also rational because
finding a new parent with a shorter waiting time decreases
node i ’s new waiting time which probably reduces QOA.
In Lines 5-7, node i temporarily changes its parent and

estimates the impact of this change on the maximum QOA of
data aggregation. Based on the estimation and transition rate
in Equation (7), in Line 8, node i decides whether to keep
its new parent or not. If the new state is established, then
nodes Pi and P ′i should run “Waiting-Assignment” algorithm
to update waiting time of their successors because of their
sub-tree changes. “Waiting-Assignment” algorithm is designed
based on proposed algorithm in [5].

2) The Details of Waiting-Assignment Algorithm: In
Algorithm 2, we first obtain initial waiting times for the
nodes using the algorithm of [5] which may be infeasible
due to the fact that it applies one-hop interference model and
assumes that there is no other link in the network than the
input tree links. Then, to obtain a feasible scheduling, all
parallel transmissions are considered to identify interference
and the interference resolved by canceling the least valuable
transmissions (Lines 4-8 in the algorithm). Put it another way,
when parent changing operation causes an interference in two
links, we simply prevent transmission in one of them which
transmits less data compared to the other link. The value of
each transmission is equal to the number of sensors whose
data that is aggregated in the source node of the transmission
packet.

Algorithm 2 : Waiting-Assignment(P, w)
Input: tree ψ rooted at P , deadline w
Output: A feasible scheduling in tree ψ

1 Run algorithm of [5] on tree ψ to have initial assigned
waiting times �Wψ

2 Assume Xi , i ∈ { j : ( j, k) ∈ ξψ } denotes QOA obtained
from sub-tree rooted at node i based on assigned waiting
times

3 foreach (i, j, k, l) ∈
{
(i, j, k, l) : (i, j), (k, l) ∈ ξψ , j =

Pi , l = Pk, l 
= j,Wψ
i = Wψ

k

}
do

4 if d(i, l) ≤ (1+ δ)RC then
5 if Xi ≥ X j then
6 Set W j = −1 and n j = 0

7 else
8 Set Wi = −1 and ni = 0

Finally, it is worthy to note that the parameter β not
only affects the accuracy of the approximation, but also
with large values of β, the algorithm migrates towards better
configurations more greedily, whereas it may lead to premature
convergence and trap into local optimum trees.

Proposition 1: “Parent-Changing” algorithm in fact
implements a time reversible Markov chain with stationary
distribution in Equation (4).

Proof: The designed Markov chain is finite state space
ergodic Markov chain where each tree configuration in state
space is reachable from any other state by one or more parent
changing process. We proceed to prove that the stationary
state of designed Markov chain is Equation (4). Let ψ → ψ ′
denote transition from state ψ to ψ ′ at a timer expiration and
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A = 1
exp(α)

exp(β�D
ψ′ )

exp(β�D
ψ )+exp(β�D

ψ′ )
. Moreover, Pr(ψ → ψ ′) is the

probability of this transition.
This probability can be calculated as follows:

Pr(ψ → ψ ′)
= Pr(i chooses P ′|i ’s timer expires).Pr(i ’s timer expires)

= A
|N≥i | .

|N≥i |∑
j∈V |N≥ j | = A∑

j∈V |N≥ j | (8)

In the algorithm, node i counts down with rate |N≥i |. There-
fore, the rate of leaving state ψ is

∑
j∈V |N≥ j |. We can

calculate transition rate qψ,ψ ′ as follows:

qψ,ψ ′ =
∑
j∈V
|N≥ j |. A∑

j∈V |N≥ j | = A. (9)

We can see that p∗ψ.qψ,ψ ′ = p∗ψ ′ .qψ ′,ψ . Therefore, the detailed
balance equation holds and the stationary distribution of con-
structed Markov chain is Equation (4) [27]. �

“Parent-Changing” algorithm is distributed if we can esti-
mate �next and �prev in the algorithm in a distributed manner.
By exact calculation of these values, the designed Markov
chain will converge to stationary distribution in Equation (4).
Hence, “Parent-Changing” algorithm can give us a near-
optimal solution of the TCSP. However, exact calculation of
�next and �prev is not possible in nodes locally since they can
only be calculated in the sink. Therefore, we need to estimate
their values. We estimate the values by two different methods.

Approx-1 First Method of Estimating �next and �prev:
When node i wants to modify its parent from Pi to P ′i (and
subsequently tree ψ to ψ ′), one possible way of estimation is
running “Waiting-Assignment” algorithm by nodes Pi and P ′i
on their sub-trees. Let �prev[s] and �next[s] denote the max-
imum achievable QoAs in a sub-tree rooted at node s before
and after the sub-tree change, respectively. Then, we have the
following estimation:

�next ≈ (�next[Pi ] +�next[P ′i ]), (10)

�prev ≈ (�prev[Pi ] +�prev[P ′i ]). (11)

When node i changes its parent from Pi to P ′i , only sub-
trees rooted at Pi and P ′i change and all other parts of the
tree remain intact and so the estimation accuracy is expected
to be high. This estimation comes with the overhead of
running “Waiting-Assignment” algorithm at nodes Pi and P ′i
to approximate �next and �prev.

Approx-2: Second Method of Estimating �next and �prev:
Another way of estimation is just using waiting times of
nodes P ′i and i :

�next ≈ WP ′i , (12)

�prev ≈ Wi . (13)

A larger value of WP ′i indicates that node i probably will
be assigned a greater waiting time if it joins to sub-tree of P ′i
and vice versa. In Section VII, we evaluate the efficiency of
both mentioned methods by simulation.

D. Perturbation Analysis

In “Parent-Changing” algorithm, if we obtain the accurate
value of �D

ψ to calculate transition rates, the designed
Markov chain converges to the stationary distribution given
by Equation (4). Thus, we have a near-optimal solution of
the TCSP with optimality gap determined in Equation (6).
In distributed fashion, however, we estimate the optimal
tree-specific QoAs by Equations (10), (11), (12), and (13).
Consequently, the designed Markov chain may not converge
to the stationary distribution in Equation (4). Fortunately, our
employed theoretical approach can provide a bound on the
optimality gap due to the perturbation errors of the inaccurate
estimation using a quantization error model.

We assume that in a tree configuration ψ , the corresponding
perturbation error is bounded to [−�ψ,�ψ ]. In order to
simplify the approach, we further assume that �D

ψ takes only
one of the following 2nψ + 1 values:

[�ψD −�ψ, . . . ,�ψD −
1

nψ
�ψ,�

ψ
D,�

ψ
D

+ 1

nψ
�ψ, . . . ,�

ψ
D +�ψ ], (14)

where nψ is a positive constant. Moreover, with probability
η j,ψ , the maximum quality of aggregation is equal to �D

ψ +
j

nψ
�ψ,∀ j ∈ {−nψ, . . . , nψ } and

∑nψ
j=−nψ

η j,ψ = 1.
Let p̃ denote the stationary distribution of the states in

the perturbed Markov chain [27]. We also denote stationary
distribution of the configurations in the original and perturbed
Markov chains by p∗ : {p∗ψ,ψ ∈ T } and p̄ : { p̄ψ,ψ ∈ T },
respectively. Then, we have [27]

p̃ = ngleq[ p̃
ψ,�D

ψ+ j
nψ
�ψ
, j ∈ {−nψ, . . . , nψ }, ψ ∈ T ],

(15)

p̄ψ(�) =
∑

j∈{−nψ,...,nψ }
p̃
ψ,�D

ψ+ j
nψ
�ψ
,∀ψ ∈ T . (16)

Using total variance distance [30] we can measure the distance
of p∗ψ and p̄ψ as

dT V (p∗, p̄) = 1

2

∑
ψ∈T
|p∗ψ − p̄ψ |. (17)

Theorem 3: a) The total variance distance between p∗ψ and
p̄ψ is bounded by [0, 1 − exp(−2β�max)] where �max =
maxψ∈T �ψ . b) By defining �max = maxψ∈T �D

ψ , the opti-
mality gap in |p∗ − p̄| is

|p∗ − p̄| ≤ 2�max(1− exp(−2β�max)). (18)
For proof and remarks, we refer to [27].
Finally, we highlight that the convergence (mixing time) of

the algorithm based on Markov approximation framework is
studied in [27] and [31]. Overall, this framework, in its basic
setting suffers from slow rate of convergence. To mitigate this,
a promising solution is to find a “good” initial aggregation
tree as the input for the iterative Algorithm 1, thereby its
convergence time can be improved. In this regard, the goal
in the next section is to develop an algorithm to construct a
fast initial aggregation tree.
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VI. INITIAL TREE CONSTRUCTION ALGORITHM

We proceed to develop an initial tree construction algorithm
to identify a good starting feasible solution for bootstrapping
the Markov approximation-based algorithms. The intuition is
that if Algorithm 1 starts from a tree which already has a good
quality, not only high-quality data aggregation experience
can be provided starting from the beginning, but also fast
convergence of the algorithm proposed in the previous section
can be achieved. Algorithm 3 outputs a near optimal feasible
aggregation tree which is a spanning tree over the underlying
WSN topology.

Algorithm 3 : “FastInitTree”
Input: Graph G = {V ∪ {S}, E}, Deadline D
Output: Close-to-optimal spanning tree

1 Define Vdone as the set of nodes that their parent in final
tree is identified

2 Vdone← ∅
3 ExtendTree(G, S, D)
4 For any node not in Vdone assign it to one of its

neighbors in Vdone with the least number of children

Algorithm 4 : “Extend-Tree”
Input: Graph G = {V ∪ {S}, E}, Parent P , Deadline D
Output: A tree rooted at parent P

1 Define Vdone as set of nodes that assigned to a parent
(initially, Vdone = ∅)

2 Vdone← Vdone ∪ P
3 Vcurr← neighbors of P except those in Vdone
4 k ← |Vcurr|
5 poweri ← number of neighbors of i in V\Vdone
6 w.l.g assume that c1, . . . , ck are the members of Vcurr

sorted in a descending order based on
poweri , i = 1, . . . , k

7 for i=1:min{k,D} do
8 Set P as parent of ci in the output tree
9 if D > 0 then

10 ExtendTree(G, ci , D − i )

In a nutshell, Algorithm 3 aims to find an appropriate
unique parent for each node (except the sink) in the graph.
By doing so, a feasible aggregation tree is indeed constructed.
In particular, Vdone includes the nodes that their parents are
chosen and initially defined as an empty set. Algorithm 3 calls
Algorithm 4 on the sink node and receives a tree rooted at the
sink. However, the returned tree by Algorithm 4 may not be
a spanning tree, i.e., some nodes may not be still in Vdone.
To construct the spanning tree, Algorithm 3 goes through
the nodes that are not in Vdone and set them as children
of one of their neighbors in Vdone with the least number of
children (in Line 4 of FastInitTree). The intuition behind this
is that a parent with less children is more likely to be able to
participate its new child in the aggregation. Before proceeding
to explain the details of Algorithm 4, we give definition of

“well-structured” graph in the context of deadline-constrained
aggregation tree construction, which is useful in the discussion
of the algorithm.

Definition 1: Graph G = {V ∪ {S}, E} with V = |V| is
well-structured under a specific sink deadline D if the optimal
tree in G is an optimal tree in a complete graph with V nodes
where V ≥ 2D − 1.

Algorithm 4 is the main part of the FastInitTree algorithm.
It works recursively on the input parent P to develop a tree.
Note that the maximum number of participant nodes with
deadline D is 2D−1 (see [11] for the proof) that is achievable
if the graph is well-structured for deadline D, thereby
its structure allows to construct a tree with the maximum
feasible QOA of 2D−1. We emphasize that if a graph is well-
structured, it does not imply that the number of communication
links in the graph is equal (or even close) to the number
of links in the corresponding complete graph. For further
illustration, consider the well-structured graph in Fig. 2a with 7
(i.e., 23 − 1) nodes and 10 links. Despite more connectivity
among the nodes in the graph of Fig. 2b, it is not a
well-structured graph and its optimal QOA is less than the
optimal QOA in Fig. 2a. Finally, we call the optimal tree of
a well-structured graph G = {V ∪ {S}, E} as ideal tree for
deadline D while its maximum QOA is 2D − 1.

Now, we turn back to explain the main idea of Algorithm 3.
In Algorithm 3 we assume that the network graph is
well-structured and try to build an aggregation tree such that
its structure is as close as possible to the corresponding ideal
tree. It is not difficult to see that in ideal tree, the number of
children of each node (including sink) is equal to its waiting
time (as in Fig. 2a). Based on this fact, Algorithm 3 starts from
the sink node and by calling Algorithm 4 tries to find top D
most powerful neighbors of sink, where the power of a node is
defined as the number of its neighbors (Line 5 in Algorithm 4).
Indeed, the algorithm assumes that these D nodes will have
waiting times {D−1, . . . , 0} according to their ability to com-
municate with the other nodes. Then, the algorithm considers
these nodes as the sink’s children in the final tree. Algorithm 4
is called recursively on sink’s children to build the rest of the
tree. The wisdom of the algorithm in selecting children of each
node makes it as a promising method.

A. Discussions on the Optimality and Complexity of
Algorithm 3

Theorem 4 proves that Algorithm 3 outputs the optimal tree,
given that the underlying graph is complete.

Theorem 4: Algorithm 3 generates an optimal aggregation
tree given that the underlying graph is a complete graph Gk

with k ≥ 2D − 1.
Proof: Note that in an ideal tree for deadline D, we

have this key property that after running optimal scheduling
algorithm [5] on the tree, each node having waiting time
w, 0 ≤ w ≤ D, has exactly w children with waiting times
{w−1, . . . , 0}. By following the steps of Algorithm 3, it can be
seen that the algorithm preserves the key property of the ideal
tree while constructing the aggregation tree. The recursive tree
construction process starts from the sink node. Since we have
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Fig. 2. Illustration of well-structured graph with sink deadline D = 3. Although the graph in Fig. 2b is more rich in terms of number of links, the structure
of graph does not allow to participate all nodes under any feasible tree. (a) A well − structured graph with 10 links. (b) A graph that is not well-structured
with 13 links.

a complete graph, Algorithm 4 is able to choose exactly D
out of N nodes with highest power as children of the sink.
In the next step, Algorithm 4 is called on these D children of
the sink namely c1, c2, . . . , cD with poweri ≥ poweri+1, i =
1, . . . , D−1 and chooses D−i children for ci , i = {1, . . . , D}
to follow the property of the ideal tree for deadline D. This
process, while keeping the key property of the corresponding
ideal tree, continues recursively in the same manner on the
remaining nodes until all nodes assigned to a parent. Thus, it
ensures that the final output is an ideal tree. �

Theorem 5: The time complexity of Algorithm 3 is
O(Nv log v) where v is the maximum node degree.

Proof: The cost of Algorithm 4 is determined by total
sorting cost of children for O(N) nodes which is bounded
by O(Nv log v). Algorithm 3 goes over nodes who are not in
Vdone to assign them to a parent which costs O(N). Therefore,
the total cost of the Algorithm 3 is O(Nv log v). �

B. Remarks on the Time-Varying Deadline in the Sink

Data aggregation is a periodic action in WSNs and in each
period, the sink may change aggregation parameters such as
deadline. When deadline changes, the previously constructed
aggregation tree in the last period may not produce the same
level of QOA. In this situation, a new tree structure is needed
to maximize QOA under the new deadline. A naïve approach
in this situation is running the tree construction algorithm with
the new deadline. However, the following theorem shows that
the optimal tree does not need to be changed for the case that
the deadline is decreased as compared to its previous value.

Theorem 6: If all nodes are source and ψ� is an optimal
tree under the sink deadline D, then ψ� is optimal for
deadline D′, D′ = 1, 2, . . . , D − 1. In addition, the optimal
scheduling can be reconstructed by reducing the previous
waiting times by D − D′.

Proof: We prove the theorem when ψ� is an ideal tree.
For the case that ψ� is not ideal, the proof is similar. With
the ideal tree ψ�, there are 2D − 1 participant nodes in
the tree. Each node (including sink) with waiting time w,
w ∈ {0, . . . , D}, has exactly w children with assigned waiting
time {w − 1, . . . , 0}. We claim that if we keep the same
tree for new sink deadline D′ with D′ < D and reduce the
previously assigned waiting times by D − D′ then, the new
scheduling is feasible and the number of participant nodes

is 2D′ − 1, i.e., the optimal QOA, which in turn proves the
optimality of the tree for deadline D′. First, the scheduling is
feasible since all waiting times are reduced by a constant and
so the transmissions occur in the same order as in the previous
feasible scheduling.

Second, the number of participant nodes in the new
scheduling, namely X , can be calculated by subtracting
total number of nodes with waiting time less than D′ from
2D − 1 since with the new scheduling, these nodes’ waiting
times will be negative which has no meaning and makes
them non-participant nodes. Therefore, we can sum up
all nodes in the previous scheduling having waiting time
greater than or equal to D′ to find X . Formally, we have
X = f (D − D′) + f (D − D′ + 1) + · · · + f (D) where,
f (i) denotes the number of nodes in the previous scheduling
with assigned waiting time i . Note that we have f (i) =
f (i + 1)+ f (i + 2)+ · · ·+ f (D) and f (D) = f (D− 1) = 1.
Then, we can calculate

∑D
i=D−D′ f (i) as follow:

A︷ ︸︸ ︷
f (D − D′)+

B︷ ︸︸ ︷
f (D − D′ + 1)+ · · · +

C︷ ︸︸ ︷
f (D)

=
A︷ ︸︸ ︷

f (D − D′ + 1)+ f (D − D′ + 2)+ · · · + f (D)

+
B︷ ︸︸ ︷

f (D − D′ + 2)+ · · · + f (D)+...+
C︷ ︸︸ ︷

f (D) .

By solving the above equation we have

X =
D∑

i=D−D′
f (i) =

D′−1∑
i=0

2i = 2D′ − 1.

�
Theorem 6 implies that if we construct a near optimal tree

for a specific deadline, then the same tree can be used for
all shorter deadlines. Most importantly, the new scheduling
is straightforward and needs no cost. This can help to avoid
the overhead of running the tree construction and scheduling
algorithm when deadline changes.

VII. SIMULATION RESULTS

In this section, we evaluate the proposed algorithms through
simulations. Unless otherwise specified, the settings are as
follows: 100 sensor nodes uniformly dispersed in a square
field with side length of 300m. Sink node is located at the
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TABLE II

ACRONYMS FOR THE ALGORITHMS

Fig. 3. Quality of aggregation vs. deadline (V = 15).

center of the top side of the square field i.e., its position is
(150, 300). The protocol interference parameter δ is 1 and
communication range of each node is 75m, i.e., two nodes are
connected in the network if their distance is “≤ 75m”. After
deployment, sensor nodes construct an initial data aggregation
tree. Except for the experiments that use initial tree built by
FastInitTree algorithm, the tree is constructed based on Greedy
Incremental Tree (GIT) algorithm [32]. We let α = 0.2 and
β = 2, and choose 80% of nodes randomly as the sources.
Each data point of the figures belongs to the average value
of 50 runs with 95% confidence interval where each run is
a different random topology. Moreover, for each topology,
sink imposes a deadline in terms of time slots uniformly and
randomly selected from interval [10,20]. We report the results
of approximation algorithms (summarized in Table II) after
50 iterations where an iteration is defined as a timer expiration
of a sensor node.

A. Performance Comparison With the Optimal Solution

In this section, we compare the performance of the proposed
methods to the optimal solution. Since calculating optimal
solution is computationally infeasible in large scale networks,
we set up a small comparison experiment where 15 sensor
nodes with communication range of 10m dispersed in a field
with side length of 40m and sink coordinate is (20,40).
Moreover, due to small network size, we consider all sensors
as the source nodes.

Fig. 3 portrays QOA of markov based algorithms against
sink deadline. The main purpose is to compare our schemes
with the optimal. The result for the algorithms “Approx-1”,

Fig. 4. Quality of aggregation vs. deadline (V = 100).

Fig. 5. Improvement in quality of aggregation vs. β.

“Approx-2”, “Approx-1H” and “Approx-2H” are very close to
each other. “Approx-1” is 88% close to optimal in this case
which is slightly better than the other algorithms. We believe
that in real-world scenarios with the higher number of sensor
nodes, the performance difference between the markov based
algorithms is more visible than that of the small scenario.
To scrutinize this claim in more detail, we set up another set
of experiments to investigate the improvements against various
deadlines in the next subsection.

B. The Effect of the Deadline

We study the effect of sink deadline on QOA. Based
on Fig. 4, the trend is that QOA improves as deadline
increases. The reason is that by increasing the deadline,
more sensor nodes have the opportunity to participate in data
aggregation.

A notable observation is that FastInitTree shows a better
performance as compared to both “Approx-1” and “Approx-2”.
Its result is also 78% of the “Approx-1H”. There is also
a small difference between “Approx-1” and “Approx-2”.
On average, “Approx-2” is 97% close to “Approx-1”.
Based on these observations, FastInitTree seems a proper
choice with respect to its low overhead and low cost.
“Approx-1H” has the best performance among all algorithms.
“Algorithm 2” which is based on proposed algorithm in [5]
and does not change the structure of the initial aggregation
tree achieved the least QOA. The poor performance of
“Algorithm 2” is the direct consequence of ignoring the
impact of aggregation tree.

C. The Effect of Parameter β

As it is stated in Section IV.A, the approximation gap
theoretically decreases while β increases. This parameter
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Fig. 6. Quality of aggregation vs. network size. The deployment field is same for all scenarios to study the effect of network density. (a) D = 10.
(b) D = 15. (c) D = 20.

is an input for the proposed Markov based approximation
algorithms and has a big impact on convergence rate of the
algorithms. We depict the effect of β by simulation in Fig. 5.
Since “Algorithm 2” and FastInitTree are independent of the
value of β, Fig. 5 only portrays the results for Markov based
algorithms. By increasing β, in addition to achieving higher
QOA, we observe that the QOA momentum of Markov based
schemes degrades while β grows. This is a consequence of fast
convergence of approximation schemes to the optimal where
in the proximity of optimal solution improvements are smaller.
The experimental results of Fig. 5 confirm the theoretical
analysis in Section V.

D. The Effect of the Network Size

Figs. 6a-6c depict obtained QOA values for network sizes
of 50 to 400 with step 50 for deadline values of 10, 15,
and 20. We fixed the deployment field while the number of
nodes increases. Therefore, in these scenarios, the greater
the network size, the denser the network is. The QOA in all
scenarios of Fig. 6 does not change significantly with the
increase in network size. Hence, we can conclude that the
behavior of studied methods does not change significantly as
network density increases. However, as deadline increases the
obtained QOA values of different algorithms increase
which is the direct consequence of the observation
in Section VII-B. Another interesting observation is that
in most cases FastInitTree outperforms “Approx-1” and
“Approx-2” that start from a random tree. However, when
their initial state is set to the output of the FastInitTree to
make algorithms “Approx-1H” and “Approx-2H”, the best
results are achieved.

E. The Effect of FastInitTree on the Convergence Rate

Since the transition rates are set wisely to improve the
maximum QOA of the aggregation tree, we expect to obtain
a better QOA as the number of transitions increases. Each
transition can only occur after a node’s timer expiration.
However, all timer expirations do not lead to a transition.
A key point here is that a desired level of QOA can be
achieved with a fewer number of transitions if the initial
tree provided by FastInitTree algorithm is chosen wisely.

Fig. 7. QOA vs. iteration numbers.

Fig. 8. Improvement of QOA for a random topology.

Fig. 7 demonstrates how the four Markov-based approx-
imation algorithms improve as the number of iterations
increases. Note that the only difference between “Approx-1”
and “Approx-1H” is in their initial state. This is the same for
“Approx-2” and “Approx-2H”. Then, a key point here is
the effect of FastInitTree algorithm on the convergence rate
of Markov approximation. “Approx-1H” with 10 iterations
achieves the same QOA that “Approx-2” obtains after 40 iter-
ations. In a similar case, “Approx-2H” with only 10 iterations
works better than “Approx-2” after 40 iterations.

Finally, in a microscopic view in Fig. 8, we demonstrate the
evolution of the maximum achieved QOA after each transition,
i.e., migrating to a new aggregation tree, for a randomly
selected sample topology.

VIII. CONCLUSION

In this paper, we addressed the NP-hard problem of
constructing data aggregation tree in WSNs, with the goal
of maximizing the number of nodes that the sink receives
their data within an application-specific aggregation deadline.
Two successive algorithms were proposed: first, a distributed
algorithm that runs in iterative manner and eventually
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converges to a bounded neighborhood of the optimum, and
second, a bootstrapping algorithm with low complexity
that can be served as a good initial point for the former.
Observations on experiments corroborated our analysis on
the importance of constructing the optimal aggregation
tree. Moreover, experimental results demonstrated that our
methods achieved a close-to-optimal solution and significant
performance improvement obtained by using appropriate
aggregation tree. Last but not the least, this work is the first
attempt on leveraging Markov approximation as a general
framework to tackle tree construction in WSNs and we
believe that this solution approach can be used in several
other applications for constructing trees in distributed manner.

Obtained results open several important future directions.
It would be interesting to incorporate energy consumption
and turn the problem to an energy-aware QOA maximization
one. This is important because the data aggregation is a
periodic operation in the network and hence, relying on a
fixed aggregation tree for a long time may lead to energy
depletion of some specific nodes and degrade the network
performance and lifetime. A wise policy might be to try to
follow a uniform distribution of nodes’ contribution in data
aggregation, while keeping the QOA at the desired level. The
second line is to tackle forest construction problem for multi-
sink networks. This is a challenging problem, since the single
sink scenario, as the special case of a multi-sink network, has
been proved to be NP-hard.

APPENDIX

A. How to Schedule Data Aggregation Given a Fixed
Underlying Tree

In this Appendix, we explain how to find the maximum
QOA in a given tree using a simple and tractable example.
The example also clarifies the data aggregation model.

Consider the data aggregation tree in Fig. 9 where the sink
deadline is set to D = 2 and all nodes are source. For
the ease of explanations, we assume that there is no other
link in the network graph. With the given deadline, the sink
can choose at most D = 2 children (due to interference
constraint) and assign their waiting times as distinguished
values between 0 and D−1 = 1. To maximize the number of
source participant nodes (QOA), one of the possible choices
for the sink is the assignment of W1 = 0 and W2 = 1. With
this assignment, node 2 can assign a waiting time of 0 to one of
its children (in this example node 5 with W5 = 0). Eventually,
the maximum QOA is 3 and participant nodes are 1, 2, 5.
During the aggregation process, in the first time slot, node 1
and node 5 send their packets to their parents in parallel. In
the second time slot, node 2 aggregates its own packet with
the received data from node 5 and sends the aggregated data
to the sink. It is not hard to see that this scheduling policy
is optimal, i.e., it achieve the maximum QOA given the fixed
aggregation tree. As a non-optimal waiting time assignment,
consider the assignment of W1 = 1,W2 = 0. In this case,
the final QOA is 2 with participant nodes 1 and 2. With
D = 3, the maximum QOA is 7 and the optimal assignment
is W1 = W4 = W6 = W7 = 0,W2 = 2,W3 = 1 and W5 = 1.

Fig. 9. An example of scheduling given a fixed underlying tree with D = 2.
It is assumed that d(1, 2) ≥ (1+ δ)RC and d(S, 5) ≥ (1+ δ)RC .

In [5], an algorithm is proposed to achieve the maximum QOA
in a given tree ψ . The scheduling algorithm in [5] is optimal
given a fixed tree as input and it does not change the structure
of the tree for further improvement of QOA. Moreover, [5]
assumes a one-hop interference model which is not suitable
for graph topology.
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