
On the Construction of Maximum-Quality
Aggregation Trees in Deadline-Constrained WSNs

Bahram Alinia⇤, Mohammad H. Hajiesmaili⇤†, and Ahmad Khonsari⇤‡
⇤ School of ECE, College of Engineering, University of Tehran, Iran

† Institute of Network Coding, The Chinese University of Hong Kong, Hong Kong
‡ School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Iran

Emails: b.alinia@ece.ut.ac.ir, mohammad@inc.cuhk.edu.hk, ak@ipm.ir

Abstract—In deadline-constrained data aggregation in wireless
sensor networks (WSNs), the imposed sink deadline in an
interference-limited network hinders participation of all sensor
nodes in data aggregation. Thus, a subset of nodes can contribute
in aggregation and quality of aggregation (QoA) increases with
the growth of the number of participating nodes. Scheduling
the nodes’ transmissions is a central problem, which aims to
maximize the QoA, while satisfying the sink deadline, i.e., on-
time delivery of the sensed data to the sink node. Although the
previous studies have proposed optimal scheduling algorithms
to this problem given a particular aggregation tree, there is no
work on constructing optimal tree in this context. The underlying
aggregation tree can make a big difference on QoA since we
demonstrate that the ratio between the maximum achievable
QoAs of different trees could be as large as O(2D), where D is
the sink deadline. In this paper, we cast an optimization problem
to address optimal tree construction for deadline-constrained
data aggregation in WSNs. The problem is combinatorial in
nature and difficult to solve as we prove its NP-hardness.
We employ Markov approximation framework and devise two
distributed algorithms with different computation overheads to
find bounded close-to-optimal solutions. Simulation experiments
in a set of representative randomly-generated scenarios show that
the proposed algorithms significantly improve QoA by 101% and
93% on average compared to the best, to our knowledge, existing
alternative methods.

I. INTRODUCTION

Nowadays, a plethora of Wireless Sensor Networks (WSNs)
have emerged for monitoring and tracking applications. Data
gathering is witnessed as a primary operation in such appli-
cations. However, packet transmission as the major source
of energy depletion turns data gathering into an acute task
[1]. To mitigate this problem, data aggregation [2], [3] has
been proposed as a promising energy conservation mechanism
to eliminate the necessity of redundant transmission. Herein,
some intermediate nodes may combine the gathered data of
different sensors by in-network computation and transmit a
single packet to the next hop.

Many recent applications are sensitive to the amount of
the latency imposed by data aggregation. For example, in
target tracking application the detected location of a moving
object may have perceptible error with the actual location if
data aggregation process takes too long [4]. Thus, the delay
contribution of an efficient data aggregation algorithm may
result in a reduced latency of the whole process so as to satisfy
the delay constraint of the application.

Some previous researches have addressed delay-efficient
aggregation problem by contemplating delay as the optimiza-
tion variable to be minimized [5], [6] in which they consider
participation of all sensor nodes in data aggregation. In these
studies, other performance metrics such as energy efficiency
have been incorporated as the constraints of the problem.
However, participation of all sensor nodes introduces severe
interference and may lead to terminating data aggregation
in a time that is beyond the application’s tolerable delay
even attempting in delay minimization. One solution is to
get the maximum application-specific tolerable delay, namely
deadline, and try to participate the sensor nodes as much as
possible before the aggregation time exceeds the deadline.
Consequently, the problem turns into maximizing Quality of
Aggregation (QoA) constrained by the application’s deadline
[7], [8].

In deadline-constrained WSNs, the number of simultaneous
transmissions is restricted due to interference among the
nodes. To cope with the interference problem, each sensor
node employs an algorithm that schedule its transmission to
occur only when the channel is free. However, if waiting
time of a node exceeds a specific value, its data cannot
be delivered to the sink before the deadline. Consequently,
deadline-constrained data aggregation comes at the expense of
sacrificing the QoA by decreasing the number of participating
nodes in order to deliver the sensed data to the sink within
the deadline. Devising an efficient algorithm that schedules
the nodes’ activity while preventing degradation of the QoA
appreciably and meeting the delay constraint of the application
is a challenging problem.

To maximize the number of participant nodes the follow-
ing two issues should be addressed appropriately: 1) the
scheduling policy, and 2) the structure of aggregation tree.
While the primary task in the scheduling algorithm is to
provide interference-free transmissions, a proper policy aims
to exploit simultaneous transmissions to increase the number
of participant nodes within the deadline [7]. The structure
of data aggregation tree is another important factor. For data
aggregation, a tree rooted at the sink node is the common
structure since it simplifies design of routing and aggregation
protocols and also helps to avoid problems such as double
counting [9]. Without constructing an appropriate aggregation
tree, we may not be able to achieve a desired level of QoA

even by designing the scheduling algorithm optimally.
Existing approaches have tackled QoA maximization prob-

lem by devising optimal scheduling algorithms. In [7], authors
have addressed this problem by proposing a polynomial time
optimal algorithm. However, the authors do not consider the
effect of data aggregation tree and so the algorithm is optimal
only under a given aggregation tree. In Section III, we show
that the ratio between QoAs of two data aggregation trees is
O(2

D
) in the worst case where D is the aggregation deadline.

This observation makes the problem of constructing maximum
QoA tree attractive.

In this paper, we take into account both optimal scheduling
and tree construction to improve QoA. Namely, we aim to
construct an optimal aggregation tree and run an optimal
tree-specific scheduling algorithm on the tree to maximize
QoA. However, constructing the optimal aggregation tree
given the network topology is nontrivial even in centralized
manner. This is more problematic when we seek an appropriate
solution amenable to distributed realization so as the sensor
nodes choose their parents just using local information. We
address this problem in single-sink WSNs setting through the
following contributions:

• We show the impact of data aggregation tree structure on
QoA by analytical discussion and explanatory example.
Besides, we prove that the problem of optimal tree
construction belongs to the class of NP-hard problems.

• We apply the recently proposed Markov approximation
framework [10] to devise two close-to-optimal algorithms
in which the sensor nodes contribute to migrate toward
the optimal tree. The highlights are distributed imple-
mentation, bounded approximation gap, and robustness
against the error of global estimation of sensor nodes by
local information.

• Through simulations experiments, we show the superior-
ity of our algorithms and compare them to the previous
work [7]. Results demonstrate that two versions of our al-
gorithm (the high and the low overhead versions) increase
the QoA of the proposed algorithm in [7] by 103% and
93%, respectively.

The remaining of this paper is organized as follows. We
briefly review related work in Section II. In Section III,
the system model, problem formulation, and the proof of
NP-hardness are explained. In Section IV, we devise two
distributed algorithms for the problem. Simulation results are
described in Section V, and the paper is concluded in Section
VI.

II. RELATED WORK

A. Minimum delay and deadline-constrained aggregation
The problem of minimum delay data aggregation tackled

intensively in the literature. In [11], it is proved that the
Minimum Latency Aggregation Scheduling (MLAS) problem
is NP-hard and a (� � 1)-approximation algorithm has been
presented where � is the maximum node degree in the net-
work. The current best approximation algorithms in [6], [12]
achieve an upper bound of O(�+R) on data aggregation delay

where R is the network radius. While most studies consider a
protocol interference model, the solutions in [5], [13] assume
a physical interference model that is more practical than the
former. In [13], a scheduling algorithm for tree-based data
aggregation is designed that achieves a constant approximation
ratio by bounding the delay at O(�+R). The work is extended
in [5] to consider any arbitrary network topology.

Within the context of deadline-constrained data aggregation
models, the goal is not to minimize the delay as an objective of
the problem. Rather, the objective is to maximize the number
of sensor nodes participating in aggregation while respecting
the application-specific deadline. This type of real-time data
aggregation has recently gained attention in some works [4],
[7], [8], [14]. In this regard, [7] presented a polynomial time
optimal algorithm for the problem under the deadline and one-
hop interference constraints. The problem is extended in [4] for
a network with unreliable links under an additional constraint
on nodes’ energy level. In [4], the authors proved that in a
network with V nodes, the problem is NP-hard when the
maximum node degree of the aggregation tree is �. They pro-
pose a polynomial-time exact algorithm when � = O(log V).
In [8], the authors considered the same problem of [7] by
taking into account the effect of data redundancy and spatial
dispersion of the participants in the quality of final aggregation
result and proposed an approximated solution for proved NP-
hard problem. A main drawback of the aforementioned studies
is that they all have tried to maximize the quality of data
aggregation on a given tree and neglect the impact of changing
the data aggregation tree structure.

B. Optimum Aggregation Tree Construction

Several studies have tackled the problem of constructing
optimal data aggregation tree [15]–[18], [20] where all have
been shown to be NP-hard. The study in [17] considers a
sensor network composed of source and non-source nodes.
Then, the problem is to construct an aggregation tree such that
the minimum number of non-source nodes included. In [18],
the problem of maximum lifetime aggregation tree is studied
for single sink WSNs. This work is extended for multi-sink
WSNs in [16]. The problem of constructing an aggregation
tree in order to minimize the total energy cost is addressed in
[20]. As solution, a constant factor approximation algorithm is
proposed. In [15], the problem of constructing a minimum cost
aggregation tree under Information Quality (IQ) constraint has
been tackled. The authors considered event-detection WSNs
and defined IQ as detection accuracy. In this paper, however,
we aim to construct maximum quality aggregation tree under
deadline constraint. This problem has not been addressed yet
by the research community. Moreover, our solution method in
solving the problem is completely different from the previous
research and is based on a recently-proposed theoretical foun-
dation, namely Markov approximation that may be considered
as a potential solution for the same category of problems.

III. SYSTEM MODEL

A. WSN Model

We consider a WSN whose topology is a graph
G = (V [{S}, ⇠) where S is the sink node, V is the set
of sensor nodes with |V| , V , and ⇠ is the set of links
between sensor nodes. All nodes have a fixed communication
range and (i, j) 2 ⇠ if nodes i and j are adjacent, i.e.,
they are in the communication range of each other. Without
loss of generality, we assume that each link has a unit
capacity. Moreover, we suppose that the system is time-slotted
and synchronized and a transmission takes exactly one time
slot. The interference model is one-hop [7], [8], [14] such
that simultaneous transmissions over links having a node in
common cause an interference. The data aggregation topology
is a spanning tree 2 T (G) rooted at the sink node where
T (G) is the set of all spanning trees in the graph G. In our
deadline-constrained scenario, the data has to be received by
the sink by the end of at most D time slots, where the value of
D is specified by the deadline requirement of the applications.
Moreover, let H

(i) ✓ V be the set that consists node i and
all its predecessors (except the sink) in aggregation tree .

We use binary decision variable Fi, where Fi = 1 if node i
is a source and Fi = 0 otherwise. We note that a node is source
if it is ready to send its sensed data. Moreover, binary variable
n i with n i = 1 indicates that node i in tree is allowed to
send data to its parent and ~n = [n i , i 2 V]. Indeed, n i = 1

indicates that node i participates in data aggregation. In this
case, if Fi = 1 then node i is a source participant, otherwise
node i participates in data aggregation as a relay node, i.e.,
it just aggregates the received data from its successors and
forwards to its parent.

Let V leaf ✓ V be the set of all leaf nodes and V sel-src ✓ V
the set of source nodes selected for data aggregation in
tree . Indeed, i 2 V sel-src if i is a source and all of its
predecessors are selected for aggregation or more formally,
V sel-src =

n

i 2 V : Fi = 1 and
Q

j2H
(i) n

j = 1

o

.

To devise a feasible aggregation scheme, we assign a
deadline of W

i , 0 W
i D time slots to each participant

node i in aggregation tree and ~W
= [W

i , i 2 V]. The
notion QoAD

 (
~W) denotes the quality of aggregation in tree

 under the imposed deadline D and assigned waiting times
determined by ~W and is defined as the number of source nodes
that participate in data aggregation [7]:

QoAD
 (

~W) = |V sel-src| =
X

i2V
Fi

Y

j2H
(i)

n j . (1)

Moreover, in tree , we define QoAD
 (

~Wi) as QoA of the
sub-tree rooted at node i with assigned waiting time of Wi.
Hereafter, we use QoA and Wi instead of QoAD

 (
~Wi) and

W
i when the corresponding tree and scheduling are obvious

or, a specific tree or scheduling is not the matter of concern.
The following example shows how to find the maximum QoA
in a given tree in simple and tractable cases. It also clarifies
the data aggregation model for the reader.

S

1

4

2

7

3

6
5

W1=0
W2=1

W5=0

WS=2
Participant (ni=1) Not selected (ni=0)

Fig. 1: Example 1 (Sink deadline D = 2).

Example 1. Consider the data aggregation tree illustrated in
Fig. 1 where the sink deadline is set to D = 2 and all nodes
are source. With the given deadline, the sink can choose at
most D = 2 children (deadline constraint) and assign their
waiting times as distinguished values (interference constraint)
between 0 and D�1 = 1. To maximize the number of source
participant nodes (i.e., maximize QoA), one of the optimal
choices for the sink is the assignment of W

1

= 0 and W
2

= 1.
With this assignment, node 2 can assign a waiting time of 0
to one of its children (in this example node 5 with W

5

= 0).
Eventually, the maximum QoA is 3 and participant nodes
are 1, 2, 5. During the aggregation process, in the first time
slot, node 1 and node 5 send their packets to their parents
in parallel. In the second time slot, node 2 aggregates its
own packet with the received data from node 5 and sends
the aggregated data to the sink.

In [7], an algorithm is proposed to achieve the maximum
QoAD

 (
~W) in given tree . However, as we stated before, this

algorithm is an optimal scheduling algorithm given a fixed tree
as input and it does not change the structure of the tree for
further improvement of QoA.

We argue that the aggregation tree structure may signif-
icantly impact QoA. When sink imposes a deadline D, all
nodes with height “� D” cannot participate in data aggrega-
tion due to the delay constraint. Consequently, it seems that
the structure of the optimal tree should not follow chain-like
long trees. Instead, one might prefer a tree so as the height
of the majority of nodes is “ D”. But, the waiting time of a
node with height h is upper bounded by D � h and hence it
can choose at most D�h children of itself as the participants.
The others together with their successors are ignored. Thus,
the same as the long tree, a star-like fat tree may yield a
non-optimal QoA. In general, an aggregation tree which is
neither so long nor so fat is suitable. It is important to stress
that the above conditions cannot bring significant insights to
devise an algorithm to construct the optimal tree. Example
2 demonstrates the impact of data aggregation tree in more
details.

Example 2. Fig. 2 illustrates a WSN topology with four
data aggregation trees where bold lines indicate the tree links.
Sink deadline is D = 4 and all nodes are the sources. The gray
nodes indicates the aggregation participants and their waiting
time is computed using the optimal scheduling algorithm [7].
Fig. 2a is an example of long tree where the height of nodes
4, 8, 12, 3, and 6 is 4. With sink deadline D, at most one
node in height D of aggregation tree can participate in data
aggregation. Moreover, node 11 is in distance 5 > D and
there is no way to participate this node. Putting together these

S

1

12

3

5

10

W5=3

6
9

2 4

11

7
W8=0

W10=2

W2=1

W1=2

8
W9=1

W7=0

WS=4

Tree link Graph linkni=1 ni=0

(a) Long tree: Max QoA = 7

S

1

12

3

5

10

W5=3

Tree link

6
9

2 4

11

7

W4=2

W10=2

W2=1

W1=0

Graph link

8
W9=1

W7=0

WS=4

ni=1 ni=0

(b) Fat tree: Max QoA = 7

S

1

12

3

5

10

W5=1

6
9

2 4

11

7

W12=1

W4=3

W8=2

W2=1

W1=2

8
W9=0

W7=0

WS=4

Tree link Graph linkni=1 ni=0

(c) Random tree: Max QoA = 8

S

1

12

3

5

10

W5=3

6
9

2 4

11

7

W12=0

W4=2

W8=1
W10=0

W2=2

W6=0

W3=0

W11=0

W1=1

8
W9=1

W7=1

WS=4

Tree link Graph linkni=1 ni=0

(d) Optimal tree: Max QoA = 12

Fig. 2: A sample WSN scenario.

considerations, the maximum QoA of tree in Fig. 2a is 7. In
Fig. 2b that demonstrates a star-like fat tree, 6 nodes are direct
neighbors of the sink, but at most 4 out of 6 have the chance
of being selected and other nodes along with their successors
should be ignored. Consequently, 5 nodes lose the opportunity
of being a participant. Fig. 2c shows another random tree with
the maximum QoA of 8. Finally, the optimal data aggregation
tree is shown in Fig. 2d where all nodes are participants.
The optimal tree is obtained by trial and error. We remark
that finding the optimal aggregation tree is not straightforward
even in our tractable topology with only 12 nodes, while in
practice the scale of the network is much larger than that of
this example.

Theorem 1 below characterizes that the gap between the
maximum achievable QoAs of two aggregation trees in a same
network is extremely large in the worst case.

Theorem 1. For an imposed deadline D log V where all
nodes are source, the maximum values of QoA in the optimal
tree and worst-case tree are bounded to 2

D � 1 and D,
respectively.

Proof. It is proved in [8] that QoA is bounded to 2

D�1 regard-
less of the aggregation tree structure. The bound is touchable
when the network graph is dense enough (an obvious case
is a complete graph). Therefore, we proceed to calculate the
upper bound in the worst case. Indeed, the worst case occurs
when we construct a chain-like tree with sink as the head of
the chain. Observe that for a node i, |H

(i)| is equal to the
distance of i to the sink in aggregation tree . In a chain tree,
there is only one possible way of scheduling where each node
i having the property |H

(i)| D assigned a waiting time
of D � |H

(i)| and is a participant. There are D such nodes
and therefore the maximum QoA of the tree is D.

B. Problem Formulation

We formulate the following optimization problem to find the
optimal tree. Namely, given network G = (V, ⇠) and deadline
D, our objective is to construct an aggregation tree which

maximizes the maximum QoA defined in Equation (1):

Z : max QoAD
 (

~W) (2)

s.t. 8i 2 {S} [V\V leaf : 8C ✓ {(j, i) : (j, i) 2 ⇠ },
X

j:(j,i)2C

n j W
i � min

j:(j,i)2C
W

j , (3)

~n 2 {0, 1}V , (4)

W
i 2 {0, 1, . . . , D � 1}, 8i 2 V, (5)

W
S = D, (6)

 2 T (G). (7)

Constraints (4)-(7) are straightforward based on the defini-
tions. The most important constraint is given by Equation (3)
to ensure that the deadline and interference constraints are not
violated. Constraint (3) states that in a feasible scheduling,
the sum of participant children of a parent node i and the
minimum waiting time of its children should be less than or
equal to node i’s waiting time, Wi. We explain this constraint
in detail. Observe that a selected children of i can only be
assigned a waiting time of Wi � 1, . . . , 0 due to deadline
constraint in the parent node. Moreover, no two children of
i can have a same waiting time otherwise, their simultaneous
transmissions will be interfered in the parent node. Therefore,
parent i can choose at most Wi children with distinct assigned
waiting times chosen from the set {Wi � 1, . . . , 0}. Now,
suppose that minimum waiting time of children is Mi. This
minimum is not always zero because in some cases number of
selected children of i is less than Wi. Therefore, transmissions
can only occur in time slots Mi,Mi + 1, . . . ,Wi � 1 which
gives us a total of Wi�Mi time slots. Since in each time slot
we have at most one transmission (interference constraint),
the total number of selected children cannot exceeds from
Wi �Mi.

C. NP-hardness

The problem of finding the optimal tree is hard to solve
as the number of trees in the network is extremely large in
reality since in a complete network graph with V nodes and
a sink, the number of feasible trees is V V�2. We prove that
problem Z is at least as hard as a variant of classical Maximum
Coverage Problem (MCP) called Maximum Coverage Problem
with Group Budget Constraint (MCPG) which is known to be
NP-hard [21].

Maximum Coverage Problem (MCP). Given a collection
of n sets U = {S

1

, S
2

, . . . , Sn} and a number l, the goal of
MCP is to form set U 0 by choosing at most l sets from U such
that the union of selected sets has the maximum cardinality:

MCP : max

U 0

�

�

�

�

�

[

Si2U 0

Si

�

�

�

�

�

, s.t. U 0 ✓ U, |U 0| l.

Maximum Coverage Problem with Group Budget
Constraint (MCPG). In [21], MCPG is introduced as a
general case of MCP. In MCPG, n sets S

1

, . . . , Sn at MCP are
partitioned to L groups G

1

, . . . , GL. MCPG has two versions
namely the cost and the cardinality versions where the latter
is our interest. In the cardinality version of MCPG, given
number l, we should select at most l sets from U such that the
cardinality of union of the selected sets is maximized where
U = {S

1

, S
2

, . . . , Sn}. Moreover, we are permitted to choose
at most one set of each group. MCPG is clearly NP-hard
because MCP which is known to be NP-hard [21] is a special
case of MCPG where each set in U is considered as a group.

MCPG : max

U 0

�

�

�

�

�

[

Si2U 0

Si

�

�

�

�

�

(8)

s.t. U 0 ✓ U,

|U 0| l,

|U 0 \Gi| 1, 8i 2 {1, . . . , L}.
The similarity between our tree construction problem and
MCPG is that in both cases the objective is to maximize the
cardinality. In MCPG we can choose at most one set from
each group. Similarly, in problem Z, each node can subscribe
(cover) different set of sensor nodes based on its deadline and
we are allowed to choose at most one set according to the
assigned deadline.

Theorem 2. Problem Z is NP-hard.

Proof. To prove, we reduce MCPG to problem Z with a
polynomial time algorithm. To this end, we construct network
graph G such that the sink is directly connected to L non-
source sensor nodes C

1

, . . . , CL where L is the number
of groups in MCPG. There are V other sensor nodes all
considered as source nodes connected to C

1

, . . . , CL either
directly or indirectly where V is equal to the total number of
distinct elements in all groups. That is, V =

PL
i=1

P|Gi|
j=1

|gi,j |
where |gij | is the cardinality of jth set in group i and |Gi|
is the number of sets in group i. Then, we set the sink
deadline to D � N where N is the total number of sets in L
groups, i.e., N =

PL
i=1

|Gi|. We connect V sensor nodes to
C

1

, . . . , CL and to each other such that if we assign a deadline
of D � ((

Pi�1

k=1

|Gk|) + j � 1) to the sink’s neighbor Ci, jth
set of Gi, 1 j |Gi| denotes the maximum cardinality set
of the sensor nodes who will participate in data aggregation
as the successors of Ci in a sub-tree rooted at this node
in aggregation tree. An optimal assignment of deadlines to
C

1

, . . . , CL is equal to select at most one set from each group
of MCPG where this optimal assignment results in maximizing
both the number of participants in data aggregation tree as

well as the number of covered elements in MCPG. Therefore,
a polynomial time optimal algorithm of problem Z leads to a
polynomial solution of MCPG which completes the proof.

IV. APPROXIMATION

Since problem Z is NP-hard, it is not possible to devise
a computationally-efficient algorithm for the optimal solution
even in a centralized manner. As such, we pursue approxi-
mated solutions. Among different approximation methods, we
leverage Markov approximation framework [10] to propose an
efficient near-optimal solution for the problem. Generally, in
this framework the goal is to tackle combinatorial optimization
problems in distributed manner so as 1) to construct a class of
problem-specific Markov chains with a target steady-state dis-
tribution and 2) to investigate a particular structure of Markov
chain that is amenable to distributed implementation. We first
begin with a brief primer of the theoretical approximation
framework [10] in the next subsection.

A. Markov Approximation
Recall that T denotes the set of all possible trees (config-

urations) of the network. For notational convenience, let us
define �

D
 = max(QoAD

 (
~W)) , i.e., when the network relies

on tree 2 T for data aggregation and sink deadline is D, the
maximum data aggregation quality is �

D
 . In addition, p de-

notes the percentage of time that configuration is employed
to accomplish data aggregation. Using these notations we can
rewrite problem Z as follows:

Zeq
: max

{p �0, 2T }

X

 2T
p �

D
 , s.t.

X

 2T
p = 1.

To derive a closed-form of the optimal solution of problem
Zeq and to open new design space for exploring a distributed
algorithm, we formulate problem Z� as an approximated
version of Zeq using log-sum-exp approximation [10]

Z� : max

{p �0, 2T }

X

 2T
p �

D
 �

1

�

X

 2T
p log p (9)

s.t.
X

 2T
p = 1, (10)

where � is a large enough positive constant that controls
the accuracy of the approximation. Problem Z� is an ap-
proximated version of problem Z off by an entropy term
� 1

�

P

 2T p log p and it is a convex optimization problem
so by solving KKT conditions, its optimal solution is obtained
by

p⇤ =

exp

�

��D

�

P

 02T exp

�

��D
 0

� , 2 T . (11)

Moreover, the optimal value is

b

�

D
 = � 1

�
log

X

 2T
exp

�

��D

�

!

. (12)

Finally, the approximation gap is characterized as:

|max

 2T
�

D
 � b�D

 |
1

�
log |T |, (13)

where the approximation gap approaches to zero as � ap-
proaches to infinity. This means that with larger values of �
the approximation model is more accurate.

In the next step, our endeavor is to obtain the solution of
problem Z� by time-sharing among different tree configu-
rations according to p⇤ in Eq. (11). According to the basic
framework, the key is to investigate a well-structured and
distributed-friendly Markov chain whose stationary distribu-
tion is p⇤ .

B. Markov Chain Design

We design a time-reversible Markov chain with states space
being T and the stationary distribution being p⇤ . Then, we
resort this Markov chain structure to hop (migrate) among
different states (trees) such that a tree with high QoA has
more chances to be visited by Markov random walks. The
problem is solved when the Markov chain converges to the
ideal steady-state distribution.

Given the Markov chain state space, the next step is to
construct the transition rate between two states. Let , 0 2 T
be two states of Markov chain and q , 0 be the transition rate
from to 0. Herein, the theoretical framework enriches us by
two degrees of freedom. It turns out that the key in designing
distributed algorithms is to design a Markov chain such that
(i) any two states are reachable from each other (i.e., Markov
chain is irreducible) and (ii) the detailed balance equation is
satisfied (i.e., p⇤ q , 0

= p⇤ 0q 0, , 8 , 0 2 T). Moreover, we
are allowed to set the transition rates between any two states
to be zero if they are still reachable from any other states.
We skip the details and refer the readers to [10] for further
explanation.

In practice, however, direct transition between two states
means migration between two tree structures. To derive a
distributed algorithm, we only allow direct transitions between
two states when there is exactly one difference between the
edges of the current and the target trees. Namely, two states
 and 0 are directly reachable from each other if we can
construct tree 0 by deleting an edge (i, j) 2 ⇠ from and
adding edge (i, k) 2 ⇠ to . Using this transition structure the
next step is to set the transition rate as follows:

q , 0
=

1

exp(↵)

exp(��D
 0)

exp(��D
) + exp(��D

 0)
(14)

where ↵ � 0 is a constant and q 0, is defined symmetrically.

C. Algorithm Design

Our goal is to realize a distributed implementation of the
Markov chain proposed in the previous section. In this part,
we detail our implementation.

To compute transition rate between the states, the maximum
QoA of both the current (�D

) and the target (�D
 0) states are

required. To calculate these values we employ the scheduling
algorithm proposed in [10], namely “Waiting-Assignment”
algorithm. “Waiting-Assignment” is a distributed polynomial
time algorithm to find the optimal waiting time of the nodes
and hence �

D
 in tree .

Our algorithm runs as follows. Given initial aggregation tree
 and deadline D, we first run “Waiting-Assignment” algo-
rithm to obtain �

D
 . Then, based on the underlying Markov

chain design and in an iterative manner, we proceed to migrate
to a target aggregation tree 0 with (probably) better �

D
 0

than �

D
 . To realize this end, each sensor node individually

runs “Parent-Changing” algorithm which is summarized as
Algorithm 1.

Algorithm 1: “Parent-Changing” algorithm for node i 2 V
Input: ↵,�
Output: New parent of node i

1 Pi parent of node i
2 N�i {j : (i, j) 2 ⇠,Wj �Wi}
3 Node i generates a timer ⌧i s exp(�i) with mean
�i =

1

|N�i| and starts to count down
4 When ⌧i expires, node i randomly selects one of its

neighbors P 0
i 2 N�i.

5 �prev node i’s estimation of �D
 in Equation (14), i.e.,

the maximum QoA of the current tree
6 Node i changes its parent to P 0

i

7 �next node i’s estimation of �D
 0 in Equation (14), i.e.,

the maximum QoA of the new tree
8 With the probability of q , 0 , node i keeps the new tree

configuration and with probability 1� q , 0 switches
back and connects to the previous parent Pi

9 if i changed its parent in Step 8 then
10 P 0

i invokes “Waiting-Assignment” algorithm on its
sub-tree

11 Pi invokes “Waiting-Assignment” algorithm on its
sub-tree

12 Node i refreshes the timer and begins counting down
The detailed description of Algorithm 1 is as follows. In

Line 3, an exponentially distributed random number with mean
�i =

1

|N�i| is generated as the timer value in which this setting
is required to ensure the convergence of the corresponding
Markov chain. In Line 4, node i selects a new parent P 0

i such
that WP 0

i
� Wi. This ensures that after the parent changing,

the data structure still remains a tree. The point is that the
new structure is not a tree only if node i chooses its new
parent from its successors where all have a less waiting time
than node i’s waiting time. Meanwhile, this strategy is also
rational because finding a new parent with a short waiting time
declines node i’s new waiting time which probably reduces
QoA. In Lines 5-7, node i temporarily changes its parent and
estimates the impact of this change on the maximum QoA of
data aggregation. Based on the estimation and transition rate
given by Equation (14), in Line 8, node i decides whether to
keep its new parent or not. If the new state is established, then
nodes Pi and P 0

i should run “Waiting-Assignment” algorithm
to update waiting time of their successors because of their
sub-tree changes. It is worthy to note that the parameter �
not only affects the accuracy of the approximation, but also
with large values of �, the algorithm migrates towards better
configurations more greedily, whereas it may lead to premature
convergence and trap into local optimum trees.

Proposition 1. “Parent-Changing” algorithm in fact imple-
ments a time reversible Markov chain with stationary distri-
bution in Equation (11).

Proof. The designed Markov chain is finite space state ergodic
Markov chain where each tree configuration in state space
is reachable from any other state by one or more parent
changing process. We proceed to prove that the stationary
state of designed Markov chain is Equation (11). Let ! 0

denote transition from state to 0 at a timer expiration and
A =

1

exp(↵)

exp(��D
 0)

exp(��D
)+exp(��D

 0)
. Moreover, Pr(! 0

) is the
probability of this transition.

This probability can be calculated as follows:

Pr(! 0
) (15)

= Pr(i chooses P 0|i’s timer expires).Pr(i’s timer expires)

=

1

|N�i|
.A.

|N�i|
P

j2V |N�j |

=

1

P

j2V |N�j |
.A

In the algorithm, node i counts down with rate |N�i|. There-
fore, the rate of leaving state is

P

j2V |N�j |. We can
calculate transition rate q , 0 as follows:

q , 0
=

X

j2V
|N�j |.

1

P

j2V |N�j |
.A = A (16)

We can see that p⇤ .q , 0
= p⇤ 0 .q 0, . Therefore, the detailed

balance equation holds and the stationary distribution of con-
structed Markov chain is Equation (11) [23].

“Parent-Changing” algorithm is distributed if we can esti-
mate �next and �prev in the algorithm in a distributed manner.
By exact calculation of these values, the designed Markov
chain will converges to stationary distribution in Equation
(11). Hence, “Parent-Changing” algorithm can give us a near-
optimal solution of problem Z. However, exact calculation
of �next and �prev is not possible in nodes locally since
they can only be calculated in the sink by running “Waiting-
Assignment” algorithm. Therefore, we need to estimate their
values. We estimate the values by two different methods.

Approx-1: First method of estimating �next and �prev.
When node i wants to modify its parent from Pi to P 0

i (and
subsequently tree to 0), one possible way of estimation
is running “Waiting-Assignment” algorithm by nodes Pi and
P 0
i on their sub-trees. Let �prev[s] and �next[s] denote the

maximum achievable QoAs in a sub-tree rotted at node s
respectively before and after the sub-tree change. Then, we
have the following estimation:

�next t (�next[Pi] + �next[P
0
i]), (17)

�prev t (�prev[Pi] + �prev[P
0
i]). (18)

When node i changes its parent from Pi to P 0
i , only sub-

trees rooted at the Pi and P 0
i change and all other parts

of the tree remain intact and so the estimation accuracy is
expected to be high. This estimation comes with the overhead

of running “Waiting-Assignment” algorithm at nodes Pi and
P 0
i to calculate �next and �prev.
Approx-2: Second method of estimating �next and �prev.

Another way of estimation is just using waiting times of nodes
P 0
i and i:

�next t WP 0
i
, (19)

�prev t Wi. (20)

A larger value of WP 0
i

indicates that node i probably will
be assigned a greater waiting time if it joins to sub-tree of
P 0
i and vice versa. In Section V, we evaluate the efficiency of

both mentioned methods by simulation.

D. Perturbation Analysis
In “Parent-Changing” algorithm, if we obtain the accurate

value of � D to calculate transition rates, the designed Markov
chain converges to the stationary distribution given by Equa-
tion (11). Thus, we have a near-optimal solution of problem Z
with optimality gap determined in Equation (13). In distributed
fashion, however, we estimate the optimal tree-specific QoAs
by Equations (17)-(20). Consequently, the designed Markov
chain may not converge to the stationary distribution in Equa-
tion (11). Fortunately, our employed theoretical approach can
provide a bound on the optimality gap due to the perturbation
errors of the inaccurate estimation using a quantization error
model.

We assume that in a tree configuration , the corresponding
perturbation error is bounded to [�� ,�]. In order to
simplify the approach, we further assume that � D takes only
one of the following 2n + 1 values:

[�

D �� , . . . ,�

D �

1

n
� ,�

D,

�

D +

1

n
� , . . . ,�

D +�], (21)

where n is a positive constant. Moreover, with probability
⌘j, , the maximum quality of aggregation is equal to �

D +

j
n

� , 8j 2 {�n , . . . , n } and
Pn

j=�n
⌘j, = 1.

Let p̃ denote the stationary distribution of the states in
the perturbed Markov chain [23]. We also denote stationary
distribution of the configurations in the original and perturbed
Markov chains by p⇤ : {p⇤ , 2 T } and p̄ : {p̄ , 2 T },
respectively. Then, we have [23]

p̃ , [p̃ ,� D+

j
n

�
, j 2 {�n , . . . , n }, 2 T], (22)

p̄ (�) =
X

j2{�n ,...,n }

p̃ ,� D+

j
n

�
, 8 2 T . (23)

Using total variance distance [22] we can measure the distance
of p⇤ and p̄ as

dTV (p
⇤, p̄) , 1

2

X

 2T
|p⇤ � p̄ |. (24)

Theorem 3. a) The total variance distance between p⇤ and
p̄ is bounded by [0, 1 � exp(�2��max)] where �max =

max 2T � .

2 3 4 52

3

4

5

6

7

8

9

10

Deadline

Q
oA

Z−Optimal
Approx−1
Approx−2
Method of [10]

Fig. 3: Quality of aggregation
vs. deadline (V = 10).

50 60 70 80 90 10020

30

40

50

60

70

80

#of Nodes

Q
oA

Approx−1
Approx−2
Method of [10]

Fig. 4: Quality of aggregation
vs. network size.

4 8 12 16 200

10

20

30

40

50

60

70

80

Deadline

Q
oA

Approx−1
Approx−2
Method of [10]

Fig. 5: Quality of aggregation
vs. deadline.

0 0.5 1 1.5 2
20

40

60

80

100

120

β

Q
oA

 Im
pr

ov
. (

%
)

Approx−1
Approx−2

Fig. 6: Improvement of qual-
ity of aggregation vs. �.

TABLE I: Comparisons
Notation Description
Z-Optimal The optimal solution of problem Z imple-

mented using exhaustive search.
Approx-1 Approximation algorithm that estimates the

current QoA using Equation (17) and (18)
in each node (has some overheads).

Approx-2 Approximation algorithm that estimates the
current QoA using Equation (19) and (20)
in each node (has no overheads).

Method of [7] Optimal algorithm presented in [7] to max-
imize QoA in a given tree.

b) By defining �

max

= max 2T �

D
 , the optimality gap in

|p⇤ � p̄| is

|p⇤ � p̄| 2�

max

(1� exp(�2��max)). (25)

For proof and remarks, we refer to [23].

V. SIMULATION RESULTS

In this section, we evaluate our proposed algorithms through
extensive simulations. Unless otherwise specified, the settings
are as follows: 100 sensor nodes uniformly dispersed in a
square field with side length of 300m. Sink node is located at
the center of the top side of the square field i.e., its position
is (150,300). Communication range of nodes is 75m, i.e.,
two nodes are connected in the network if their distance is
“ 75m”. After deployment, sensor nodes construct an initial
data aggregation tree based on Greedy Incremental Tree (GIT)
algorithm [24]. We let ↵ = 0.2 and � = 2, and choose 80%
of nodes randomly as sources. Each data point of the figures
belongs to the average value of 50 runs with the 95% confi-
dence interval where each run is a different random topology.
Moreover, for each topology, sink imposes a deadline in terms
of time slots uniformly and randomly selected from interval
[10,20]. We report the results of approximation algorithms
after 200 iterations where an iteration is defined as a timer
expiration of a sensor node.

A. Performance Comparison with the Optimal Solution

In this part, we compare the performance of our algorithm
to the optimal one. Due to the computationally intractable
feasible solution space of large networks, we set up a small
comparison experiment where 10 sensor nodes with commu-
nication range of 7.5m dispersed in a field with side length
of 30m and sink ordination is (15,30). Moreover, due to small
network size, we consider all sensors as the source nodes.

Fig. 3 portrays QoA of different methods against sink
deadline. The main purpose is to compare our scheme with
the optimal. The results show that “Approx-1” and “Approx-
2” methods approximate the optimal solution with an accuracy
of 87% and 84% on average, respectively. We believe that in
real-world scenarios with the higher number of sensor nodes,
the improvement is higher than that of the small scenario. To
scrutinize this claim in more detail, we set up another set of
experiments to investigate the improvements against various
network sizes in the next subsection.

B. The Effect of Network Size

Fig. 4 depicts obtained QoA values for network sizes of
50 to 100 with step 10. The interesting result is that the
improvement of approximation algorithms against “Method of
[7]” significantly increases as network size grows. The reason
lies behind the number of transitions in large networks. In large
networks the corresponding Markov chain comes with the
higher number of states and so the probability of more useful
transitions is higher. Thus, higher improvement is expected in
larger networks. This observation corroborates our claim that
the improvements of our proposed algorithms are significantly
better in large networks rather than small ones. The improve-
ment by approximation methods to “Method of [7]” are at
least 37% and 29% in all network sizes for “Approx-1” and
“Approx-2”, respectively. Moreover, the average improvements
are 80% and 72%, respectively. “Method of [7]” shows little or
no variation in obtained QoA value while network size grows.

C. The Effect of Deadline

We now study the effect of sink deadline on QoA. Based on
Fig. 5, the trend is that QoA improves as deadline increases.
This is in line with the fact that by increasing the deadline,
more sensor nodes have the opportunity to participate in data
aggregation. A notable observation is the small difference
between “Approx-1” and “Approx-2”. On average, “Approx-
2” is 96% close to “Approx-1”. This makes “Approx-1” as a
good choice with respect to its small overhead and simplicity.
Compared to “Method of [7]”, “Approx-1” and “Approx-2”
enhance QoA by 101% and 93% on average, respectively. The
poor quality of “Method of [7]” is a result of neglecting the
impact of data aggregation tree structure.

40 80 120 160 200

50

60

70

80

90

100

110

120

#of Iterations

Q
oA

 Im
pr

ov
. (

%
)

Approx−1
Approx−2

Fig. 7: Improvement of QoA
vs. iteration numbers

0 10 20 30 4030

40

50

60

70

80

#of passed transitions

Q
oA

Approx−1
Approx−2

Fig. 8: Improvement of QoA
for a random topology

D. The Effect of Parameter �
As it is stated in Section IV.A, the approximation gap

theoretically decreases while � increases. We depict the effect
of � by simulation in Fig. 6. Since “Method of [7]” is
independent of the value of �, Fig. 6 only portrays the amount
of improvement to “Method of [7]”. By increasing �, in
addition to achieving higher improvements, we observe that
the improvement momentum of our schemes to “Method of
[7]” degrades while � grows. This is a consequence of fast
convergence of approximation schemes to the optimal where
in the proximity of optimal solution improvements are smaller.
The experimental results of Fig. 6 confirm the theory.

E. The Effect of Transition Numbers
Since the transition rates are set wisely to improve maxi-

mum QoA of the aggregation tree, we expect to obtain a better
QoA as the number of transitions increases. Each transition
can only occur after a node’s timer expiration. However, all
timer expiration does not lead to a transition. In Fig. 7, the ef-
fect of number of iterations (i.e., timer expiration) is shown for
different iteration numbers. As it is expected, by increasing the
number of iterations the efficiency of our schemes enhances.
However, in one case when iteration numbers increased from
120 to 160, the improvements decreased. This can occur due to
local optimum points in solution space. After more iterations,
approximation methods leave this local optimum and converge
to global optimal point. Finally, in a microscopic view in
Fig. 8, we demonstrate the evolution of the maximum achieved
QoA after each transition, i.e., migrating to a new aggregation
tree, for a randomly selected sample topology.

VI. CONCLUSION

In this paper, we addressed the problem of constructing the
maximum quality data aggregation tree in deadline-constrained
WSNs. The objective is to maximize the number of nodes
that the sink receives their data within a given application-
specific aggregation deadline. We proved that the optimization
problem is NP-hard and devised two distributed approximation
algorithms. Observations on experiments corroborated our
theoretical claim on the importance of constructing the optimal
aggregation tree. Moreover, experimental results demonstrated
that our methods not only achieve a close-to-optimal solution,
but also significantly outperform the existing methods that rely
on random underlying data aggregation trees. As an ongoing
study, we plan to extend this work to multi-sink WSNs with
unreliable links.

REFERENCES

[1] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An application
specific protocol architecture for wireless microsensor networks,” IEEE
Trans. on Wireless Communications, vol.1, no. 4, pp. 660-670, 2002.

[2] B. Krishnamachari, D. Estrin, and S. B. Wicker, “The impact of data
aggregation in wireless sensor networks,” in Proc. IEEE ICDCSW, 2002.

[3] R. Rajagopalan and K.P. Varshney, “Data aggregation techniques in sensor
networks: a survey,” IEEE Commun. Surveys Tutorials, vol. 8, no. 4, pp.
48-63, 2006.

[4] S. Hariharan, Z. Zheng, and N. B. Shroff, “Maximizing information in
unreliable sensor networks under deadline and energy constraints,” IEEE
Trans. on Automatic Control, pp. 1416-1429, 2013.

[5] H. Li, C. Wu, Q.S. Hua, and F. Lau, “Latency-minimizing data aggrega-
tion in wireless sensor networks under physical interference model,” Ad
Hoc Networks, vol. 12, pp. 52-68, 2014.

[6] X. Xu, X.-Y. Li, X. Mao, S. Tang, and S. Wang, “A delay-efficient
algorithm for data aggregation in multihop wireless sensor networks,”
IEEE Trans. on Parallel and Distributed Systems, vol. 22, pp. 163-175,
2011.

[7] S. Hariharan, and N. B. Shroff, “Maximizing aggregated information in
sensor networks under deadline constraints,” IEEE Trans. on Automatic
Control, vol. 56, no. 10, pp. 2369-2380, 2011.

[8] B. Alinia, H. Yousefi, M. S. Talebi, and A. Khonsari, “Maximizing
quality of aggregation in delay-constrained wireless sensor networks”,
IEEE Communications Letters , vol. 17, no. 11, pp. 2084-2087, 2013.

[9] S. Nath, P. Gibbons, B. Phillip, S. Seshan, and R.Z. Anderson, “Synopsis
diffusion for robust aggregation in sensor networks,” in Proc. ACM
SenSys, 2004.

[10] M. Chen, S. C. Liew, Z. Shao, and C. Kai, “Markov approximation for
combinatorial network optimization,” IEEE Trans. on Information Theory,
vol. 59, no. 10, pp. 6301-6327, 2013.

[11] X. Chen, X. Hu, and J. Zhu, “Minimum data aggregation time problem
in wireless sensor networks,” in Proc. IEEE MSN, 2005.

[12] P.J. Wan, S.C.H. Huang, L. Wang, Z. Wan, and X. Jia, “Minimum-
latency aggregation scheduling in multihop wireless networks,” in Proc.
ACM MOBIHOC, 2009.

[13] X.Y. Li, X. Xu, S. Wang, S. Tang, G. Dai, J. Zhao, and Y. Qi, “Efficient
data aggregation in multi-hop wireless sensor networks under physical
interference model,” in Proc. IEEE MASS, 2009.

[14] S. Hariharan, and N. B. Shroff, “Deadline constrained scheduling for
data aggregation in unreliable sensor networks,” in Proc. IEEE WiOpt,
2011.

[15] H.X. Tan, M.C. Chan, W. Xiao, P.Y. Kong, and C.K. Tham, “Information
quality aware routing in event-driven sensor networks,” in Proc. IEEE
INFOCOM, 2010.

[16] Y. Wu, Z. Mao, S. Fahmy, and N. B. Shroff, “Constructing maximum
lifetime data-gathering forests in sensor networks” IEEE/ACM Trans. on
Networking, vol. 18, no. 5, pp. 1571-1584, 2010.

[17] D. Li, J. Cao, M. Liu, and Y. Zheng, “Construction of optimal data
aggregation trees for wireless sensor networks,” in Proc. IEEE ICCCN,
2006.

[18] Y. Wu, S. Fahmy, and N.B. Shroff, “On the construction of a maximum-
lifetime data gathering tree in sensor networks: NP-completeness and
approximation algorithm,” in Proc. IEEE INFOCOM, 2008.

[19] T. W. Kuo, and M.J. Tsai, “On the construction of data aggregation tree
with minimum energy cost in wireless sensor networks: NP-completeness
and approximation algorithms,” in Proc. IEEE INFOCOM, 2012.

[20] H. Trent, “A note on the enumeration and listing of all possible trees
in a connected linear graph,” Nat. Acad. Sci. U.S.A., vol. 40, no. 10, pp.
1004-1007, 1954.

[21] C. Chekuri, and A. Kumar, “Maximum coverage problem with group
budget constraints and applications,” Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, vol. 3122, pp.
72-83, 2004.

[22] P. Diaconis and D. Stroock, “Geometric bounds for eigenvalues of
Markov chains,” The Annals of Applied Probability, pp. 3661, 1991.

[23] S. Zhang, Z. Shao, M. Chen, and L. Jiang, “Optimal distributed P2P
streaming under node degree bound,” IEEE/ACM Trans. on Networking,
vol. 22, no. 3, June 2014.

[24] B. Krishnamachari, D. Estrin, and S. Wicker, “Modelling data-centric
routing in wireless sensor networks,” in Proc. IEEE INFOCOM, 2002.

