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Abstract— QoS-aware networking applications such as real-
time streaming and video surveillance systems require nearly
fixed average end-to-end delay over long periods to commu-
nicate efficiently, although may tolerate some delay variations
in short periods. This variability exhibits complex dynamics
that makes rate control of such applications a formidable task.
This paper addresses rate allocation for heterogeneous QoS-
aware applications that preserves the long-term average end-
to-end delay constraint while, similar to Dynamic Network
Utility Maximization (DNUM), strives to achieve the maximum
network utility aggregated over a fixed time interval. Since
capturing temporal dynamics in QoS requirements of sources
is allowed in our system model, we incorporate a novel time-
coupling constraint in which delay-sensitivity of sources is
considered such that a certain end-to-end average delay for
each source over a pre-specified time interval is satisfied. We
propose DA-DNUM algorithm, as a dual-based solution, which
allocates source rates for the next time interval in a distributed
fashion, given the knowledge of network parameters in advance.
Through numerical experiments, we show that DA-DNUM gains
higher average link utilization and a wider range of feasible
scenarios in comparison with the best, to our knowledge, rate
control schemes that may guarantee such constraints on delay.

I. INTRODUCTION

Nowadays, a plethora of networking applications have
emerged that are delay-sensitive, and require some guar-
antee on the end-to-end delay. Despite instantaneous delay
sensitivity shown by some applications, one may identify
several others that only concern the average end-to-end delay
over some interval of interest. A notable instance is media
streaming where end-to-end delay, averaged over a pre-
specified interval, is obliged not to exceed some threshold to
ensure continuous playback. Some other examples include
real-time WSNs and delay-constrained networked control
systems. In such scenarios, due to temporal variations in
both source traffic and network characteristics, we face an
ever increasing need to accomplish rate allocation capable
of capturing such dynamicity.

As a promising framework, Network Utility Maximization
(NUM) has been exploited in several network resource
allocation scenarios; see, e.g., [1]–[3]. In its simplest form,
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NUM concerns a network that supports a set of sources and
links. Each source is associated with a utility as a function
of its rate and transmits its packets through a route, which
is a subset of the links in the network. The fixed capacity
of links and routing structure dictate a set of linear capacity
constraints. The goal of the NUM problem is to find source
rates that maximize the aggregate utility of the network given
capacity constraints.

Several studies have thus far incorporated end-to-end delay
in the basic NUM model; see, e.g., [4]–[9], and the detail
mentioned in Section II. In these studies, end-to-end delay
either is included in the objective function or introduced
some constraints to the problem. Despite these studies, the
basic NUM framework is intrinsically incapable of captur-
ing temporal variation in network characteristics especially
when they evolve with time scales comparable to those of
the underlying dual-based algorithms. Generally speaking,
(single-period) NUM along with delay constraints is subject
to limited degrees of freedom, and consequently, one may
face a broad range of infeasible problems.

The conquest of variability-aware NUM-based approaches
was further followed by [10], where Dynamic NUM
(DNUM), a multi-period extension of NUM, was proposed.
Indeed, DNUM considers the network utility aggregated
over a finite time interval and thereby takes into account
temporal variations in the parameters involved in the system
model. Moreover, it allows linear constraints on source rates,
referred to as delivery contracts, which may be construed as
QoS constraints over the time interval. Such delivery con-
tracts, however, are incompetent to capture more complicated
key features such as queuing delays and jitter. In contrast
to single-period NUM that suffers from limited degrees of
freedom, DNUM offers several flexibilities. In particular, the
former may face lots of infeasible problems whereas the
latter admits relatively larger set of feasible problems yet
higher total aggregated utility.

In this paper, we propose a variant of DNUM that strives
to allocate source rates so as to satisfy constraints on end-to-
end delays as well as capacity constraints. Towards this, the
main contributions of this paper are summarized as follows:

B Built upon DNUM framework, we characterize the
average end-to-end delay requirements of sources as a set of
general and well-structured constraints. Our proposed model
in Section III is a generalized version of the model that
is built on [7], and thereby it avoids precise knowledge
of underlying packet arrival models and relies only on the
derivative of the delay function. Generalization of the model
of [7] to a multi-period setup provides several flexibilities.



The most promising one, perhaps, is that it allows some
degree of freedom to sacrifice utility in some periods so
as to maintain delay while compensating for it in some
other periods. Secondly, our proposed formulation endows us
the ability of maintaining several delay constraints for each
source, where each delay constraint concerns a particular
time interval of interest (see the discussion in Section III-
C.1 for an real example).

B We develop a distributed algorithm called Delay-aware
Dynamic Network Utility Maximization (DA-DNUM) in Sec-
tion IV that solves the problem granted the knowledge of
parameters for the next time interval in advance. Our solution
is based on dual decomposition approaches and since we con-
centrate on strongly convex delay functions and consequently
cast the rate allocation as a convex optimization problem, the
problem can be efficiently solved in a distributed way thanks
to existing dual-based approaches.

B Finally in Section V, we verify the correctness of our
proposed solution and DA-DNUM algorithm by a set of
tractable numerical experiments and give some comparison
scenarios to demonstrate its superiority against the relevant
state-of-the-art rate allocation schemes. As an interesting
observation, our result corroborates that the proposed tem-
poral formulation enlarges the set of feasible scenarios in
comparison with [7].

A. Basic Notations and Terminologies

Throughput the paper, we use the following notations. For
any vector z (resp. matrix Z), z ≥ 0 (resp. Z ≥ 0) means
that all components of vector z (resp. matrix Z) are non-
negative. The vector ej denotes the j-th unit vector. The
operator ‖.‖ signifies standard Euclidean norm. The domain
of a function f is denoted by dom f . Moreover, 1A is 1 if
A occurs and 0 otherwise. Finally, [.]+ and [.]P respectively
define the projection onto the positive orthant and set P . We
also give some necessary definitions that can be found in,
e.g., [11].

Definition 1: A function f(.) is a G-Lipschitz function if

|f(x1)− f(x2)| ≤ G‖x1 − x2‖, ∀x1,x2 ∈ dom f.
Definition 2: A convex function f(.) is κ-strongly convex

if and only if there exists a constant κ > 0 such that the
function f(x)− κ

2 ‖x‖
2 is convex.

It can be seen that if f(.) is convex and satisfies
‖∇f(.)‖ ≤ G, then it is G-Lipschitz. We remark that if
f(.) is twice differentiable then f(.) is κ-strongly convex if
there exists constant κ such that ∇2f(x) − κI is positive
semidefinite.

II. RELATED WORK

A number of studies have incorporated end-to-end delay
into the basic NUM framework. In these works, end-to-
end delay either is included in the objective function of
NUM (e.g., [4], [9], [12]) or is treated as constraint of the
underlying optimization problem (e.g., [6], [7]).

Delay as objective function. In [4], delay is incorporated
into the objective function and therefore, delay plays its
role as a penalty to the utility function. Consequently, the

goal is to simultaneously maximize the aggregated utility
of all sources and reduce the end-to-end delays. Based on
a delay-sensitive utility function introduced in [13], authors
in [9] aim to propose some application-oriented rate allo-
cation schemes employing an alternative utility definition.
Both approaches, however, prove incompetent to provide
some guarantee for delay, thereby fail to be employed in
QoS-aware applications with hard long term average delay
requirements.

Delay as constraint. In another set of works [6], [7],
[14], the source delay is introduced as constraints of the
optimization problems. By introducing Virtual Link Capacity
Margin (VLCM) to characterize source delay as constraint,
the authors in [7] have proposed a joint rate allocation and
scheduling scheme in multi-hop wireless networks. By a
different approach in [6], another variant of NUM problem is
formulated to address joint power and rate control. Generally
speaking, NUM along with delay constraints is subject to
limited degrees of freedom, and as a result, one may face a
broad range of infeasible problems. We will investigate this
phenomenon in details in our experiments in Section V.

To capture dynamics in the network and sources, NUM
framework has been extended to the DNUM framework
[10] that supports time-varying characteristics in network
model parameters such as flow utilities, links capacities, and
routing matrix. The DNUM framework has been extended in
different research areas [15]. In [15], the time-varying nature
is utilized to consider temporal variations in modeling the
utility of the sources with video streaming applications.

III. MODEL AND PROBLEM FORMULATION

A. Network Model

Our model is based on that of DNUM [10], which
considers rate allocation over a discrete-time interval
T = {1, . . . , T}1. We assume that network possesses
a set L = {1, . . . , L} of links shared among a set
S = {1, . . . , S} of sources. We represent the possibly time-
varying routing in the network defined by routing matrices
Rt = [(Rt)ls]L×S , t ∈ T , whose element (Rt)ls is defined
as follows:

(Rt)ls =

{
1 if s-th source uses l at time t
0 otherwise

We let ctl denote the capacity of link l at period t and
ct = [ctl]l∈L be the vector of link capacities at period t.

Moreover, we let xst ∈ Xst be the transmission rate
of source s at period t, where Xst , [wst,Wst] and
wst and Wst are the minimum and the maximum rates
of source s at period t, respectively. We further require
0 < wst ≤Wst, ∀s, t. We let X = [xst]S×T be the rate
matrix and define X = {X ∈ RS×T : xst ∈ Xst}. A feasible
rate matrix X then satisfies: X ∈ X .

1The duration of each period t and the whole time horizon T is
an application-specific design parameter. As an example, in [15], video
streaming is the underlying application, thus, each period is set according
to the length of the video frames and the time horizon T is set according
to the length of GOPs (Group Of Pictures).



B. Capacity Constraints

To model capacity constraints, we first give the definition
of link margin variables: for each link l and time period
t, link margin variable σtl is defined as the difference
between capacity of link l and the maximum allowable flow
passing through it [7]. Unlike [7], however, our setup does
not admit schedulability constraints and hence we proceed
to formulate link margin as follows. Consider conventional
capacity constraint for link l at period t given by∑

s∈S
(Rt)lsxst + σtl = ctl and σtl ≥ 0.

We then relax the equality constraint above and establish the
following constraints for link l at period t:∑

s∈S
(Rt)lsxst + σtl ≤ ctl and σtl ≥ 0.

The relaxation above, though constricts resource usage (i.e.,
capacity), plays an important role in limiting the flow of link
l and thereby proves essentially useful to control the queuing
delay of link l. Introducing σt = [σtl]l∈L and σ = [σt]t∈T ,
we then represent the capacity constraints in a compact way
as

RtXet + σt ≤ ct and σt ≥ 0, ∀t ∈ T . (1)

These constraints constitute a set of 2T ×L linear inequali-
ties.

C. Average Delay Constraints

Having defined link margin variables, we define D(σtl)
as the delay of link l at period t. Clearly, the way D(σtl)
depends on σtl is determined by the packet arrival model.
For instance, for M/M/1 queuing model whose packet arrival
is a Poisson process, we have

D(σtl) =
q

σtl
, q > 0. (2)

Another notable instance is the case of M/G/1 queuing model
whose delay function is given in [6] and [16].

In what follows, we list our assumptions on the delay
function D(.):
A1. D(.) is twice differentiable.
A2. D(.) is G-Lipschitz.
A3. D(.) is κD-strongly convex.

A notable example that satisfies these assumptions is the
delay function of (2). We also remark that these assumptions
are valid for M/G/1-based arrival processes, thereby cover the
majority of existing queuing models.

In the present study, we only consider queuing delays and
hence, for each source s, we obtain the end-to-end delay by
simply adding up all link delays along the path of s. Writing
φst for the end-to-end queuing delay of source s at period
t, we get

φst =
∑
l∈L

(Rt)lsD(σtl).

We further introduce φs = [φst]t∈T . Next, we define the
constraint on average end-to-end delay as follows: Assume
that source s requires its average end-to-end queuing delay

over some interval of interest T∆ ⊆ T with length ∆ be less
than some constant d. This constraint is formally given by

1

∆

∑
t∈T∆

φst ≤ d. (3)

To model a general scenario for the introduced delay con-
straint, we assume that each source s requires Ks delay con-
straints of the form (3), indexed by k ∈ Ks = {1, . . . ,Ks}.
In Section III-C.1, we provide a real-world example as a
realization of this consideration in a typical mission-oriented
wireless sensor network (WSN) scenario. Each delay con-
straint k ∈ Ks concerns a specific time interval. Overlap
between such intervals, however, is allowed. In order to
encode delay constraints of the form (3), for each source s,
we introduce the delay indicator matrix Ms = [(Ms)kt]Ks×T
as follows

(Ms)kt =

{ 1
Gs

k
if k-th delay constraint of s concerns t,

0 otherwise,

where Gsk =
∑
t∈T 1{(Ms)kt 6=0}. Now, we can write the k-th

delay constraint of source s as∑
t∈T

(Ms)ktφst ≤ dsk,

where dsk is the average delay requirement of source s
for its k’s delay constraint. Note that the elements of
every row of Ms add up to 1 and therefore, we may
interpret the left hand side of the constraint above, like
that of (3), as the end-to-end queueing delay of s averaged
over time interval {t ∈ T : (Ms)kt = 1}. Moreover, letting
ds = [dsk]k∈Ks

yields the following vector representation for
delay constraints:

Msφs ≤ ds, ∀s ∈ S. (4)

These constraints constitute a set of
∑
s∈S Ks inequalities

that are nonlinear in σ.
1) An Illustrative Example: Mission-Oriented WSNs: To

motivate the appropriateness of the model above, we next
provide a practical application of this model for WSN [17],
in which there are several coexisting applications (henceforth
missions) overlaid on a WSN. Let us look at a surveillance
application that employs various types of sensors such as
video, motion detector, and thermal sensors to provide
assistive ambient intelligence in e.g., disaster recovery en-
vironments.

The naı̈ve approach is to require each sensor to periodi-
cally transmit the data at specific time intervals. Albeit simple
to implement, this approach is inefficient as each mission
might possess particular QoS requirement in terms of end-
to-end delay. For instance, a video mission may demand for
a long-time delay constraint to work efficiently. In contrast,
the thermal mission may report the temperature periodically
on a regular basis and thereby declares a short-term delay
requirement at certain periods.

The network designer therefore needs to select network
parameters properly to achieve the best efficiency. Besides
other parameters, one could set T∆ = T for the real-time
video mission, as it records and streams data to the sink



L(X,σ,λ,µ) =
∑
t∈T

∑
s∈S

Ust(xst)−
∑
t∈T

λT
t (RtXet − ct + σt)−

∑
s∈S

µT
s (Msφs − ds) (5)

=
∑
t∈T

∑
s∈S

(
Ust(xst)− λstxst

)
−
∑
t∈T

∑
l∈L

(
µtlD(σtl) + λtlσtl

)
+
∑
t∈T

λT
t ct +

∑
s∈S

µT
sds.

continuously. The value of T∆ has a periodic shape for
the thermal sensor. Say, in the case of T = 60, we can
define T∆1

= {1, 2, 3}, T∆2
= {21, 22, 23}, and T∆3

=
{41, 42, 43}. In this respect, this sensor reports its data in 3
different steps as mentioned above.

D. Optimization Problem

We associate a utility function Ust(.) to each source s at
period t. Assumptions on the utility functions are:
A4. For every s and t, Ust(.) is continuous, monotonically

increasing, and twice differentiable.
A5. For every s and t, −Ust(.) is κU -strongly convex.

We define the network utility U(.) as the sum of all utilities
over time horizon T and sources S as follows:

U(X) =
∑
s∈S

∑
t∈T

Ust(xst).

We cast the dynamic utility maximization problem as

P1: max
X∈X ,σ≥0

U(X)

subject to:
RtXet + σt ≤ ct, ∀t ∈ T ,
Msφs ≤ ds, ∀s ∈ S,

φst =
∑
l∈L

(Rt)lsD(σtl), ∀s ∈ S,∀t ∈ T .

First, we highlight that constraints of P1 constitute a compact
set. Hence, at least one optimal solution exists. Furthermore,
P1 is a strongly convex optimization problem. An immediate
consequence of this property is the uniqueness of the optimal
solution. We remark that P1 is non-separable due to coupled
delay constraints. It’s worth noting that in the lack of
average delay constraints, problem P1 degenerates to DNUM
problem of [10] without delivery contracts. In the above
formulation, we address QoS requirements mainly through
end-to-end delay constraints and thus avoid augmenting
delivery contracts, i.e. linear constraints on source rates over
T . We stress, however, that the solution procedure below
permits having delivery contracts as well. We further note
that for the case of T = 1 and Ks = 1,∀s, P1 reduces to
problem formulation in [7] (for the case of rate allocation
only).

IV. OPTIMAL RATE ALLOCATION ALGORITHM

In this section, we solve P1 and develop a distributed
rate allocation algorithm. We note that strong duality [18]
holds for P1 and hence we can solve it through its dual. We
let λt = [λtl]l∈L and µs = [µsk]k∈Ks

respectively denote
the Lagrange multipliers (dual variables) associated to the
capacity constraints for period t and average delay con-
straints for source s. Moreover, we introduce λ = [λt]t∈T

and µ = [µs]s∈S . Now, we give the partial Lagrangian of
P1 in (5), where

λst ,
∑
l∈L

(Rt)lsλtl,

µtl ,
∑
s∈S

∑
k∈Ks

(Ms)kt(Rt)lsµsk.

To solve problem P1, we derive the dual function g(λ,µ)
as follows:

g(λ,µ) = max
X∈X ,σ≥0

L(X,σ,λ,µ)

= max
X∈X

∑
t∈T

∑
s∈S

(
Ust(xst)− λstxst

)
+ max

σ≥0

∑
t∈T

∑
l∈L

(
µtlD(σtl) + λtlσtl

)
. (6)

We establish the dual problem associated to P1 as [11]:

D1 : min
λ≥0,µ≥0

g(λ,µ).

Given λ and µ, let X? = [x?st]T×S and σ?t = [σ?tl]l∈L
be the maximizers of the problems in 6. The maximizers
are stationary point of the Lagrangian. Therefore, through
preliminary manipulations we get

x?st(λ) =
[
U ′−1
st (λst)

]
Xst

, ∀s,∀t,

σ?tl(λ,µ) =

[
D′−1

(
−λtl
µtl

)]+

, ∀t,∀l.

One consequence of strong convexity of P1 is that the dual
function g(λ,µ) is differentiable in its domain. Hence, we
can employ the gradient projection method [11] to solve
D1. Using Danskin’s Theorem [11], for dual variable update
needed for gradient projection method we get

λ
(j+1)
tl =

[
λ

(j)
tl + γ

(∑
s∈S

(Rt)lsx
(j)
st + σ

(j+1)
tl − ctl

)]+

,

∀l ∈ L,∀t ∈ T ,

µ
(j+1)
sk =

[
µ

(j)
sk + ζ

(∑
t∈T

∑
l∈L

(Rt)lsD(σ
(j)
tl )− dsk

)]+

,

∀s ∈ S,∀k ∈ Ks,

where x
(j)
st = x?st(λ

(j)), σ(j+1)
tl = σ?tl(λ

(j),µ(j)), and
γ > 0 and ζ > 0 are sufficiently small step sizes. Note
that proper selection of γ and ζ is crucial for guaranteeing
the convergence of the iterative solution above.

Given appropriate γ and ζ, update equations for dual
variables converge to minimizers of D1. Strong duality then
guarantees that optimal values of D1 and P1 coincide and
that X? and σ? can be obtained accordingly. Next, we give a
distributed iterative algorithm, named Delay-Aware Dynamic
Network Utility Maximization (DA-DNUM), that is based on



a distributed implementation of the above iterative solution.
Since gradient-based algorithms are not finitely convergent,
in DA-DNUM algorithm we introduce a parameter th to
stop the iterative procedure. DA-DNUM algorithm relies on
both the knowledge of network parameters in advance of time
interval T and ability of explicit/implicit exchange of dual
variables between sources and links (more precisely, between
each source s and links on the path of s). The pseudo-code
of DA-DNUM is shown as Algorithm 1. For the convergence
analysis of DA-DNUM we refer to [19].

Algorithm 1: DA-DNUM Algorithm
1 Acquire network parameters for the next time horizon T .
2 Initialize X0,σ0,λ0, and µ0.

3 while max
s,l,t

{
|x(j+1)
st − x(j)st |, |σ

(j+1)
tl − σ(j)

tl |
}
≥ th do

4 At each link l, for each period t, obtain µtl,(j) and
update:

5 σ
(j+1)
tl =

[
D′−1

(
− λ

(j)
tl

µtl,(j)

)]+
6

λ
(j+1)
tl =

[
λ
(j)
tl +γ

(∑
s∈S(Rt)lsx

(j)
st + σ

(j+1)
tl − ctl

)]+
7 At each source s, for each period t, obtain λst,(j) and

compute:

8 x
(j+1)
st =

[
U ′−1
st

(
λst,(j)

)]
Xst

9 µ
(j+1)
sk =[

µ
(j)
sk + γ

(∑
t∈T

∑
l∈L(Rt)lsD(σ

(j)
tl )− dsk

)]+
10 end

V. EXPERIMENTAL RESULTS

This section is devoted to the experimental results. First,
we concentrate on a tractable network topology to verify
the correctness of DA-DNUM. Second, by describing two
comparison scenarios, we investigate the performance and
scalability of DA-DNUM.

A. Experiment 1: Simple and Tractable Topology

In order to facilitate detailed discussion of results, we have
chosen a network with time-invariant routing and topology
shown in Fig. 1. We set T = 10 and c1t and c4t are chosen
uniformly at random from [4, 6], and c2t and c3t are drawn
uniformly at random from [4, 10]. We choose Ust(xst) =
log xst for all s and t. Moreover, we assume that D(z) = 1

z
for all links that represents M/M/1 queuing model. Delay
indicator matrices and ds, s ∈ S are given below:

M1 =
1

3
×
[
1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0

]
,

M2 =
1

6
×
[
1 1 1 1 1 1 0 0 0 0

]
,

M3 =
1

6
×
[
0 0 1 1 1 1 1 1 0 0

]
,

M4 =
1

4
×
[
0 0 1 1 1 1 0 0 0 0

]
,

d1 = [2 1]T , d2 = d3 = 2, d4 = 2.5.

Link 1

Source 1

Link 2 Link 3

Source 3

Source 4

Link 4

Source 2

Fig. 1: Network Topology, Experiment 1

We remark that these delay indicator matrices imply that
for t = 9, 10, P1 degenerates to DNUM [10] without
delivery contracts, since there is no delay constraint in these
periods.

Fig. 2(a) and Fig. 2(b) display the rate allocation result
obtained from DA-DNUM algorithm with γ = 0.01 and
th = 0.01. For the sake of comparison, Fig. 2(a) and
Fig. 2(b) also show the rate allocation result of DNUM
(without delivery contracts), which is obtained by solving
P1 after removal of delay constraints. Fig. 2(a) shows final
source rates of the two cases. As we expect, Fig. 2(a)
exhibits the same values for both DA-DNUM and DNUM for
t = 9, 10. By contrast, for t = 1, . . . , 8 source rates obtained
by DA-DNUM are lower than those provided by DNUM.
This stems from existence of at least one delay constraint in
any of these periods.

Finally, Fig. 2(b) shows link traffics, link margins, and the
amount of under-utilized link capacities. Clearly, in periods
t = 9, 10, all links possess zero link margins, since there is
no delay constraint in these periods. On the other hand, for
t = 1, . . . , 8, positive values for link margin variables (for at
least one link) evince that there is at least one active delay
constraint imposed by the sources.

B. Experiment 2: Comparison Scenario

We next compare DA-DNUM with the algorithm proposed
in [7] (by assuming fixed capacities) in a large-scale scenario.
We remark that the algorithm proposed in [7] is based on
the single-period version of NUM that is customized in
delay-sensitive setting. Consequently, single-period NUM in
algorithm of [7] persuades us to solve T separate problems
for the entire T . We consider a line topology with 200 links
and 198 sources (Fig. 3) whose 200 × 198 (time-invariant)
routing matrix is given in below:

Rt =



1 1 0 0 . . . 0 0
1 1 1 0 . . . 0 0
1 1 1 1 . . . 0 0
1 1 1 1 . . . 0 0
1 0 1 1 . . . 0 0
...

...
...

...
. . .

...
...

1 0 0 0 . . . 0 1


, ∀t. (7)

In addition, the other parameters are listed in Table I.
To clearly exhibit the different behavior of DA-DNUM, we
intentionally set up only 2 average delay constraints for
source 1 (the source with all links on its path) and source 2
(the one that traverses through first 4 links).

To exhibit the flexibility of DA-DNUM, this experiment
simply obliges a minimum rate demand as xmin

1,2 = 5. This
means that the minimum rate requirement of source 1 at
period 2 is 5. The aforementioned minimum rate demand
is in conflict with the average delay requirement since the
higher rate results in higher end-to-end delay according to
the limited capacity of links. Nonetheless, DA-DNUM easily
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Fig. 3: Network Topology, Experiment 2

TABLE I: Parameters of Experiment 2

Parameter Value
S 198
L 200
T 50

ctl, t ∈ T , l ∈ L [8,12] kbps
ks, s ∈ {1, 2} 1
Ms, s ∈ {1, 2} [1/50]1×50

ks, s ∈ {3, . . . , 198} 0
Ms, s ∈ {3, . . . , 198} [0]1×50

ds, s ∈ {1, 2} 50

remedies this conflicting situation by assigning the declared
minimum rate to s1 at t2, thus enduring a larger short-
term delay (around 85 instead of d1 = 50). Thanks to
supporting time-coupled system model, DA-DNUM allocates
proper rates to this source in other periods, so as to maintain
the average delay below 50. In contrast, the single-period
algorithm of [7] fails for this scenario since the underlying
NUM becomes infeasible. This experiment signifies the
relatively wider set of feasible problems of DA-DNUM.
One may construct several other feasible scenarios for DA-
DNUM that are infeasible for the problem of [7].

VI. CONCLUSION

To ameliorate QoS experience in real-time networking
applications in terms of guaranteeing fixed average end-
to-end delay over long periods, we addressed a dynamic
NUM problem with source-driven time-coupled constraints
on average end-to-end delay. We proposed a delay-aware rate
allocation algorithm as dual-based distributed solution of the
formulated optimization problem. Our algorithm allocates
source rates in a way that achieves the maximum network-
wide utility aggregated over time interval while satisfy-
ing capacity and delay constraints. Numerical experiments
exhibited that, compared to existing schemes DA-DNUM
admits wider feasible scenarios along with higher resource
utilization. This enhancement originated from multi-period
problem setup that allows short-term delay fluctuations while
keeps long-term value around the required one.
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