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Abstract— This paper investigates the potential of using
aggregate controllable loads and energy storage systems from
multiple heterogeneous feeders to jointly optimize a utility’s
energy procurement cost from the real-time market and their
revenue from ancillary service markets. Toward this, we formu-
late an optimization problem that co-optimizes real-time and
energy reserve markets based on real-time and ancillary service
market prices, along with available solar power, storage and
demand data from each of the feeders within a single distri-
bution network. The optimization, which includes all network
system constraints, provides real/reactive power and energy
storage set-points for each feeder as well as a schedule for the
aggregate system’s participation in the two types of markets.
We evaluate the performance of our algorithm using several
trace-driven simulations based on a real-world circuit of a New
Jersey utility. The results demonstrate that active participation
through controllable loads and storage significantly reduces the
utility’s net costs, i.e., real-time energy procurement costs minus
ancillary market revenues.

I. INTRODUCTION

Rapidly increasing deployment of distributed energy re-
sources (DERs) (e.g., residential solar panels, electric vehi-
cles (EVs), distributed storage and smart loads) within the
distribution network is bringing several new operational chal-
lenges to utilities. For example, increased energy production
on the distribution side can lead to reverse power flows, as
well as both over and under voltages [1]. There is a growing
literature investigating these critical operational issues [2]–
[14]. However, the disruption of one of the core revenue
streams for utilities, the selling of energy to customers, is an
equally important, but less studied problem.

To procure this energy, utilities participate in day-ahead
and real-time electricity markets. In the current market
design, the largest portion of energy (roughly 90%) is traded
in the day-ahead market based on forecast load and supply
for the upcoming (next) day [15]. The real-time market
then settles the imbalance between the forecast and actual
loads, e.g. 5 minutes ahead of dispatch. Increased penetration
of uncertain and intermittent distributed energy resources,
reduces the accuracy of day-ahead net load forecasts. This
leads to a corresponding rise in the day-ahead market forecast
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errors and raises the real-time market volume, which can
jeopardize utility revenue [16].

A proactive approach for a utility to prevent this type of
revenue loss, or to potentially even increase their revenue,
is the use of controllable loads and storage systems to
strategically procure energy and provide ancillary services
within the transmission markets. The utility thus becomes an
active real-time market participant; both selling surplus en-
ergy procured in the day-ahead market or generated by feeder
resources, and using system storage to optimize real-time
energy procurement, i.e., arbitrage based on the real-time
spot price. Utilities with sufficient resources can also engage
in various ancillary service markets, such as spinning or non-
spinning reserve markets, and frequency regulation. Toward
this, DERs are the critical resources for utilities to participate
in such markets. However, there several technical and eco-
nomic challenges to realizing this potential, which motivates
recent interest in studying the potential benefits of using
these resources to participate in various energy markets [2]–
[11]. For example, [2]–[5] investigate the participation of
distributed flexible load resources in the real-time market.
The studies in [6], [7] focus on aggregating EV resources
to supply energy to the electricity market, while [9]–[11]
consider utilizing the aggregate capacity of various types of
energy storage systems to participate in real-time energy mar-
kets. Ancillary service market participation by DERs has also
been considered [2], [8]. Strategic joint participation in real-
time and ancillary service markets expands the design space
and has the potential to increase utility revenue streams.
However, none of these previous works consider the strategic
management of DERs for simultaneous participation in both
of these markets.

This paper addresses this research gap by designing a
distribution network management system that uses aggregate
flexible loads and (virtual) storage systems distributed across
multiple feeders to co-optimize the participation a utility in
the real-time energy and reserve markets. In particular, we
formulate a joint optimization problem that simultaneously
minimizes the utility’s procurement cost in the real-time
energy market and maximizes the utility’s revenue through
participation in the real-time reserve market that dispatches
feeder level aggregate DERs connected to the primary dis-
tribution feeder. As a first step towards understanding the
problem we investigate a deterministic version of this joint-
optimization problem, i.e., perfect day-ahead, real-time and
ancillary market locational marginal price (LMP) informa-
tion, and a price-taker scenario such that the price is uniquely
determined by the Independent Service Operator (ISO). Key



interactions and potential technical and economic challenges
arising from this new operational paradigm are easier to
isolate in this simplified setting.

Our formulation takes into account the operational limits
and power flow constraints of primary distributions networks
and coordinates resources across secondary feeders using an
multi-layer aggregate model. More precisely, we consider a
radial primary distribution feeder that interconnects multiple
transformer banks and coordinates resources across the entire
system to participate in different markets; we call this
layer the Grid Market Layer (GML). Each bank can have
multiple heterogeneous secondary feeders with controllable
loads and time-varying energy storage systems. Each each
secondary feeder is abstracted as an aggregate controllable
generation and virtual storage system that aggregates control-
lable demands and DERs by performing its own individual
optimization, e.g., as proposed in [17]–[19]; we call this
layer the Feeder Optimization Layer (FOL). In other words,
we assume that the FOL layer is designed to aggregate
all of the required information, e.g., solar penetration and
real/reactive power charging. The GML objective is to mini-
mize the procurement cost in the real-time energy market and
maximize the revenue of obtained in the reserve market. The
design space is comprised of the set points of the aggregate
generation and charging/discharging patterns of the virtual
storage at different feeders, which is provided to each FOL.
We use a second-order cone relaxation [20] to transform the
GML problem into a second-order cone problem (SOCP),
which can be efficently solved using a number of off-the
shelf SOCP solvers.

We study the performance of our GML optimization prob-
lem by trace-driven experiments using power consumption
and generation data traces from two transformer banks,
with 4 secondary feeders each, obtained from a local utility
in New Jersey (NJ). As excepted, the procurement cost
decreases with increasing solar penetration. Our results also
confirm that the utility’s net costs are decreased through
strategic joint participation in the real-time and reserve
markets.

The rest of this paper is organized as follows. Section II
presents the background and preliminaries related to different
electricity markets. Section III is devoted to formulating
the GML optimization problem. Numerical simulations are
discussed in Section IV. Finally, Section V concludes the
paper and outlines directions of ongoing and future work.

II. PRELIMINARIES

In this section we review and discuss the three markets of
interest in this work. We then highlight the scenarios under
which the utility can profit from such markets.

A. Energy Markets

We consider integrated energy and ancillary service mar-
kets that operate in a two-settlement procedure that settles
transactions at two different timescales and prices, i.e., day-
ahead with day-ahead hourly prices, and real-time with spot
prices that change every 5 minutes.

1) Day-Ahead Market: In the day-ahead market opera-
tion, suppliers and utilities submit their bids for the next
day energy and ancillary services, e.g., reserve capacity,
selling and buying on an hourly basis. This bidding is based
on day-ahead forecasts of generation and demand. After
gathering bids from both supply and demand side, the ISO
runs a double-auction mechanism and clears the market by
determining a day-ahead price.

2) Real-Time Market: In real-time markets, the ISO col-
lects bids from suppliers and utilities and determines the 5-
minute real-time spot price based on the actual supply and
demand. When the supply is less than the actual demand
as compared to the forecast day-ahead demand, the market
is up-regulated and the real-time spot price is larger than
the day-ahead price, and vice versa. The real-time market
operation, thus settles the imbalance between the day-ahead
schedule and the real-time actual demand. In this work, we
focus on the revenue associated with this imbalance.

3) Ancillary Service Market: There are several types of
ancillary services in electricity markets [21]. We can cate-
gorize ancillary services into market-based and cost-based
services. Market-based services are sold and priced through
dynamic markets, similar to energy markets, e.g. operating
reserve services. Cost-based services are traded based on
their cost which is independent from the market dynamics.
Notable examples in this category include reactive supply
and voltage control services.

In this work, we focus on market-based ancillary services.
More specifically, we focus on the contingency reserves that
most ISOs procure both day-ahead and real-time markets. We
next describe how the GML interacts with the these markets
and the feeders in the distribution system.

B. Market Interaction of the Grid Market Layer
We assume a system in which a utility can control the

solar output of a connected set of feeders, and manage the
charging/discharging storage systems of each feeder. The
GML balances the mismatch between day-ahead and real-
time markets using the aggregate flexibility of distributed
residential solar panels, and the storage systems for a set
of feeders connected to the transmission system at a point
of common coupling. The GML optimization further uses
the capacity of the feeders to participate in real-time reserve
(ancillary service) market. Thus, the GML can sell energy
from either surplus generation of the solar generation or
discharge of storage to the real-time market when the spot
price is high, as well as exploit the virtual storage to
participate in real-time reserve markets.

III. THE GML OPTIMIZATION FRAMEWORK

The goal of GML is to reduce the cost of procuring energy
in real-time market by leveraging the aggregate potential of
distributed solar generation and small-scale storage systems
operating in distribution system feeders. We now develop
the GML optimization problem, which coordinates feeder
resources across several transformer banks. We assume a
time horizon consisting of T equal time slots, each indexed
by t.
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Fig. 1. An illustrative example of the storage model. Each feeder can have
several physical storage elements (the upper panels). However, it participates
in grid market layer problem by representing a single aggregate storage (the
lower panels). The number of physical storage may vary over time. In this
example, there are two storage elements at time t for feeder f . At time t+1,
an additional storage is added to the available physical storage. We define
the parameter Wf (t) as the exogenous change in the aggregate storage level
to represent this addition (or potentially subtraction) over time.

A. Feeder Level Constraints and Cost Function

We consider a radial primary distribution feeder that in-
terconnects multiple transformer banks. Each bank can have
multiple heterogeneous secondary feeders with controllable
loads and time-varying energy storage systems. We use
P df (t) ∈ R and Qdf (t) ∈ R to denote the real and reactive
power (VAr) demands of feeder f at time t. For each feeder
we consider two potential sources of real power updates: (i)
solar generation (or power response) and (ii) storage.

We use P gf (t) ∈ R and Qgf (t) ∈ R to denote the opti-
mization variables associated to the real and reactive power
generation of feeder f at time slot t. Each feeder can control
its aggregate generation output, within a range of P gf (t) ∈
[Pmin
f (t), Pmax

f (t)] and Qgf (t) ∈ [Qmin
f (t), Qmax

f (t)], respec-
tively.

The virtual storage at each feeder f represents the ag-
gregate energy flexibility within the secondary network, that
can be used to participate in market by either charging or
discharging. Although the virtual storage usually consists of
several physical storage elements or controllable demand, in
our model we regard them as a single entity. For examples of
market mechanisms available to aggregate storage, we refer
the reader to [17]–[19]. We use Bf (t) to denote the storage
level at time t.

Then, by letting Bmin
f (t) and Bmax

f (t) denote the mini-
mum and maximum state of charge of feeder f at time t the
storage level is bounded by

Bmin
f (t) ≤ Bf (t) ≤ Bmax

f (t).

Finally, the evolution of the storage level over time is:

Bf (t+ 1) = Bf (t)− δtRf (t) +Wf (t),

where Wf (t) represents the exogenous change in the storage
level of feeder f at t, and Rf (t) ∈ R is the optimization
variable that denotes the charge/discharge rate of the storage.
An illustrative example of our storage model is shown
in Fig. 1. Since some of the elements that constitute the
aggregate storage may be interfaced to the system using

converters, we assume that the virtual storage can deliver
or absorb both real and reactive power. Thus VAr injection
and absorption rates from the storage at feeder f ∈ F at
time t ∈ T are bounded as

Cmin
f (t) ≤ Cf (t) ≤ Cmax

f (t), (1)

where Cf (t) > 0 indicates VAr injection and Cf (t) < 0
indicates VAr absorption. This basic formulation can be
extended to capture more sophisticated storage models in-
cluding charging/discharging efficiency and maximum charg-
ing/discharging rates using the methods described in [22].

1) Feeder cost function: The cost associated with solar
generation P gf (t) of feeder f at time t is denoted by
ff,t(P

g
f ). In general, we consider the cost function to be

time varying for each feeder in order to allow it to represent
state dependent conditions such as losses, congestion, etc..
Different generation sources might have heterogeneous cost
functions. For concreteness, in this paper, we implement a
linear function to mimic the cost model of each feeder,

ff,t(P
g
f (t)) = βf (P

g
f (t)− P

max
f (t)), (2)

where we use the constant βf to represent the price for solar
generation curtailment.1

B. Bank Level Constraints

The secondary feeders connect to a primary feeder through
transformer banks that ultimately connect to the transmission
network. We use a radial primary feeder model with a set of
N banks with indexes i = 1, 2, · · · , n, for each bank i, and
Ti denotes the set of (secondary) feeders connected to it. We
use L to denote the set of unordered pairs {i, j}. Given two
banks i and j, {i, j} ∈ L indicates that the two banks are
interconnected by a line with impedance ri,j + ixi,j .

We assume transformer banks to be lossless. Therefore
the net real and reactive powers flowing through transformer
bank i are given by

Pi(t) =
∑
f∈Ti

(
P df (t)− P

g
f (t)−Rf (t)

)
,

Qi(t) =
∑
f∈Ti

(
Qdf (t)−Q

g
f (t)− Cf (t)

)
,

where P df and Qdf are real and reactive power demand at
feeder f , P gf and Qgf are real and reactive solar generation
at feeder f , and Rf and Cf are real and reactive power
charge/discharge rates of the virtual battery associated with
feeder f .

1) Reserve Market Constraints: Most ancillary service
markets, and in particular reserve markets, are characterized
by three parameters. A response time parameter τ , which
specifies the number of real-time slots that the reserve
provider has before they are required to be online. A duration
parameter k, which specifies the amount of real-time slots
that the reserve should be available. And a capacity parame-
ter Prsrv, which represents the amount of reserve scheduled.

1A similar cost function can be used to model the marginal change in
losses.



Fig. 2. Evolution of Prsrv(t), P c
rsrv(t), and Brsrv given a single ancillary

price α at time t. In particular, if the ancillary bid at time t is α, the
system instantly reserves Prsrv(t) = P . Then the cumulative reserved power
becomes available after τ slots and lasts for k slots P c

rsrv(t + τ + k̂) =
P, 0 ≤ k̂ ≤ (k − 1) . In the meantime, the estimated amount of energy to
guarantee a consecutive P c

rsrv at time t + τ is Brsrv(t + τ) = kPδt. The
future reserved energy is Brsrv(t + τ + k̂) = Brsrv(t + τ) − k̂P δt with
k̂ <= (k − 1).

For example, in the NYISO, the real-time intervals are 5
minutes, response times are 10 or 30 minutes (τ = 2 and 6)
and reserves must be available for 60 minutes (k = 12).

We further assume that the utility is allowed to be cleared
in consecutive intervals. The cumulative power reserved over
the previous τ time steps, i.e. P crsrv(t), is given by

P crsrv(t) =

(t−τ)∑
h=max{(t−τ)−k+1,1}

Prsrv(h). (3)

We limit the the total amount of reserves committed at time
t as P crsrv(t) ∈ [Pminrsrv (t), Pmax

rsrv (t)].
We provide reserves using storage, which requires an

estimate of the minimum amount of energy required to
provide a total of P crsrv(t) at time t, which is given by

Brsrv(t) = δt

(t−τ)∑
l=max{(t−τ)−k+1,1}

(l − (t− τ) + k)Prsrv(l) (4)

where δt is the time interval for the real-time market. The
virtual batteries available energy must be larger than the
energy required for reserves, i.e.,∑

f

Bf (t) ≥ Brsrv(t).

Figure 2 illustrates the relationship between Prsrv(t), P crsrv(t)
and Brsrv.

2) Market prices: We use λda(t) and λrt(t) to denote day-
ahead and real-time market prices at time t. P da(t) is the
day-ahead forecast load, which is an input to the problem.
P0(t) is the actual net demand. As mentioned before, our
market cost function is built upon the deterministic market
price that is insensitive to changes in P0(t). This allows us

to ignore the price variation caused by inelastic bidding. The
electricity market cost can then be represented as

P =

T∑
t=1

δt
(
λda(t)P da(t) + λrt(t)

(
P0(t)− P da(t)

))
.

C. The GML Optimization Problem

We formulate the GML optimization problem as,

min

T∑
t=1

δt

(
λda(t)P da(t) + λrt(t)

(
P0(t)− P da(t)

))

+

T∑
t=1

δt

∑
f

ff,t(P
g
f (t))− α(t)Prsrv(t)


s.t.

Feeder Level:
Pmin
f (t) ≤ P gf (t) ≤ P

max
f (t), (5a)

Qmin
f (t) ≤ Qgf (t) ≤ Q

max
f (t), (5b)

Bmin
f (t) ≤ Bf (t) ≤ Bmax

f (t), (5c)

Rmin
f (t) ≤ Rf (t) ≤ Rmax

f (t), (5d)

Cmin
f (t) ≤ Cf (t) ≤ Cmax

f (t), (5e)

Bf (t+ 1) = Bf (t)− δtRf (t) +Wf (t), (5f)

Bank Level:

Brsrv(t) = δt

(t−τ)∑
l=max{(t−τ)−k+1,1}

(l − (t− τ) + k)Prsrv(l), (5g)

∑
f

Bf (t) ≥ Brsrv(t), (5h)

Pmin
rsrv (t) ≤ P crsrv(t) ≤ Pmax

rsrv (t), (5i)

Pi(t) =
∑
f∈Ti

(
P df (t)− P

g
f (t)−Rf (t)

)
, (5j)

Qi(t) =
∑
f∈Ti

(
Qdf (t)−Q

g
f (t)− Cf (t)

)
, (5k)

Pi(t)
2 +Qi(t)

2 ≤ Smax
i (t)2, (5l)

(V min
i (t))2 ≤ vi(t) ≤ (V max

i (t))2, (5m)

Pi,k(t) = ri,kli,k(t) + Pk(t) +
∑

m:k→m

Pk,m(t), (5n)

Qi,k(t)= xi,kli,k(t) +Qk(t) +
∑

m:k→m

Qk,m(t),

(5o)

vk(t)− vi(t) = (r2i,k + x2i,k)li,k(t)

− 2(ri,kPi,k(t) + xi,kQi,k(t)), (5p)

li,k(t)vi(t) = Pi,k(t)
2 +Qi,k(t)

2, (5q)

P0(t) =
∑
i:0→i

P0,i(t), (5r)

where
P gf (t) ∈ R, Qgf (t) ∈ R, Rf (t) ∈ R, Cf (t) ∈ R,
Pi(t) ∈ R, Qi(t) ∈ R, Bf (t), vi(t) ∈ R, li,k(t) ∈ R,



Pi,k(t) ∈ R, Qi,k(t) ∈ R, Prsrv(t) ∈ R, Brsrv(t) ∈ R.

Constraints (5n)-(5o) are for each line {i, k} ∈ L with series
impedance ri,k + jxi,k, and vi(t) = |Vi(t)|2 is the squared
voltage magnitude of bank i at t, and li,k(t) = Ii,k(t) is the
squared magnitude of the current flow from bank i to bank
k on line {i, k}. Pi,k(t) and Qi,k(t) are the branch real and
reactive power flow in line {i, k}, respectively. α(t) is the
ancillary energy price data. A schematic of the optimization
variables, and how the GML interacts with the feeders and
the transmission system markets is depicted in Figure 3.

Grid Market 

Layer

In
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u
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Input from Real-time Market
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u
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u

ts

[Cmax
f (t), Cmin

f (t)]

P g
f (t)

Qg
f (t)

Rf (t)

Cf (t)

Bf (t)

P0(t)
Wf (t)

Prsrv(t)

[Pmax
rsrv (t), Pmin

rsrv (t)]

λda(t),λrt(t),α(t)

P da(t), P d
f (t), Q

d
f (t)

Fig. 3. The inputs and outputs of the GML. As shown the bounds on the
solar and storage variables are obtained from the FOL and the prices λda,
λrt, and α are obtained from the energy and ancillary markets. The GML
feeds trajectories of the solar and storage to the FOL and set the ancillary
operation trajectory.

To solve this problem we relax the quadratic equalities in
(5q) based on the method proposed in [20] to obtain

li,k(t)vi(t) ≥ Pi,k(t)2 +Qi,k(t)
2,

which transforms the optimization problem into a second-
order cone problem (SOCP). As we consider the connections
between feeders and transformer banks to be ideal, i.e., no
energy loss, the relaxation is exact, see the condition in [20,
Theorem 4].

IV. SIMULATIONS

We now provide a set of numerical simulations of a
distribution network consisting of two transformer banks,
each with 4 feeders representing the a real sub-network of a
NJ utility. A schematic of the corresponding 8 feeder circuit
is shown in Figure 4. Our simulations use aggregate feeder
level time traces for the real and reactive power demand
data (P df (t) and Qdf (t)) as well as the solar generation data
(P solar
f (t)) for the circuit obtained from the utility for a day

in July 2016. The top panel of Figure 5 summarizes the
aggregate power demand and solar generation for all of the
simulations.

A. Data Trace Overview and Simulation Setup

In order to simulate a range of solar penetration levels we
scale the total available solar power in the following manner

Pmax
f (t) = ηp.r. × P solar

f (t)

∑
t P

d
f (t)∑

t P
solar
f (t)

, (6)

where ηp.r. is the penetration level.

Fig. 4. Schematic of the test system comprised of two transformer banks
each with 4 feeders. Bank 0 is connected to the transmission systems. Each
transformer bank has an apparent power capability of 35MVA and base
voltage at 69kV.

We assume that the storage capacity is 10% of the demand
Bmax
f (t) = 10%P df (t). We set the minimum bounds for

feeder generation and virtual storage capacity to zero, i.e.,
Pmin
f (t) = Bmin

f (t) = 0. The reactive power generation
bounds are set to Qmin

f (t) = −0.05Pmax
f (t) and Qmax

f (t) =
0.05Pmax

f (t).
We consider exogenous changes Wf (t) in storage avail-

ability at feeder f and time t of the form

Wf (t) =


0.1× (Bmax

f (t+ 1)−Bmax
f (t)),

if Bmax
f (t+ 1)−Bmax

f (t) ≥ 0;

0.9× (Bmax
f (t+ 1)−Bmax

f (t)), otherwise.

These constraints on exogenous storage changes reflect typ-
ical asymmetry expected in the system. For example, an
electric vechicle battery added to the system is likely to be
empty, whereas one that is removed is likely to be close to
fully charged.

We consider both 10 and 30 minute reserve markets,
characterized by the response time, respectively τ = 2
and τ = 6, and the commitment duration parameter k =
12. The simulations are run for a fixed 24 hour horizon
t ∈ {1, . . . , T = 288}, Therefore, is not well defined for
t ∈ {1 . . . τ} ∪ {T}. To fix this issue, we introduce the
following extra constraint

Brsrv(t) = 0,∀t ∈ {[1, τ ] ∪ {T}}. (7)

The real-time λrt(t) and ancillary energy price data α(t)
are from NYSIO [23].

The day-ahead term λda(t)P da(t) in the cost function of
the optimization problem (5) is constant, since these values
are known in advance. Therefore, we can solve the following
version of (5) without changing the optimal values of the
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Fig. 7. Simulation for co-optimization of real-time and 30 minute ancillary service markets (with 30 minutes response time and 1 hour participation).
The top panel illustrates the scheduled reserve services and the cumulative reserve powers for the 20% penetration case along with the ancillary prices.
The center panel shows P0(t) and the lower panel shows the storage dispatch and use for the reserve market participation for the 20% penetration case



TABLE I
NET RE-BALANCING COST (8).

Scenario Configuration Solar 20% Solar 50%
#1 Baseline (no control) $1.76 (0.014%) -$8.32 (−0.109%)
#2 Real-time Balancing -$77.56 (−0.608%) -$87.66 (−1.210%)
#3 Real-time Balancing and 30-min Reserve -$82.17 (−0.650%) -$92.36 (−1.275%)
#4 Real-time Balancing and 10-min Reserve -$265.46 (−2.083%) -$275.62 (−3.614%)

Fig. 8. Simulation for co-optimization of real-time and 10 minute ancillary service markets (i.e. 10 minute respond time and 1 hour participation) with
Panel 1 and panel 3 focus on the case with 20% solar penetration.

decision variables.

min

T∑
t=1

δt
(
λrt(t)(P0(t)−P da(t))

)
+ δt

∑
f

ff,t(P
g
f (t))−α(t)Prsrv(t)

 , (8)

s.t. (5a)-(5r).

The optimal value obtained in (8) represents the net cost of
real-time balancing after accounting for reserve participation
and feeder cost.

B. Numerical Results

We simulated the following four different instances of the
problem, with both 20% and 50% solar penetration.
Scenario #1: This baseline scenario assumes battery storage
is not available, Bmaxf (t) = 0,∀f, t, and the solar runs at
full capacity, P gf (t) = Pmaxf (t),∀t.
Scenario #2: In the real-time balancing scenario we assume
that all of the ancillary services prices α(t) = 0,∀t. In other
words, the system does not sell capacity to the reserve market
and the utility only uses DERs for arbitrage in the real-time
market.
Scenario #3: We assume non-zero ancillary service prices for
a 30-min reserve market (τ = 6) with a 60 minutes reserve
commitment (k = 12).

Scenario #4: The final scenario considers co-optimization
between the real-time market and a 10-min reserve market
with 60 a minute reserve commitment (i.e., τ = 2 and k =
12). Note that for the particular day considered the average
ancillary price for the 10-min market is higher than that of
the 30-min market.

Scenarios Cost Comparison: The net balancing costs for
all the four scenarios are summarized in Table I. These
results show expected trends, i.e., with a higher solar pen-
etration, the optimal cost has a lower value as less energy
needs to be procured from the transmission system. When
comparing the results vertically (the same scenarios), we can
see that when more flexibility is provided to the system,
e.g., storage availability, and more profitable options are
introduced, e.g, reserves with higher average cost, the net
rebalancing cost decreases.

The bottom panel of Figure 5 shows the energy procure-
ment from the transmission system, P0(t) for the baseline
case. Here, the system sells energy to the grid when solar
availability exceeds demand. The dispatch associated with
cost reductions seen in the second scenario are illustrated
in Figure 6, where it is clear that the use of virtual storage
allows the system to avoid procuring energy when the LMPs
are high. For example, slightly after 3PM, P0(t) is lower
as the system uses storage instead of procuring expensive
energy from the transmission system. In general, the storage
discharges when the LMPs are high and charge when they



are low (taking advantage of the price differential).
Figure 7 shows the simulation results when the GML co-

optimizes the real-time and 30-min reserve market.Similar
coordination between high LMP and high solar usage is also
seen in this scenario. However, compared with Figure 6, the
battery state of charge Btotal is relatively high when the
GML schedules reserves in order to maximize the revenue
by reserving some energy in batteries. This only occurs when
the reserve revenue is higher than the additional cost incurred
through re-balancing.

Figure 8 plots the results from the fourth scenario where
the higher average reserve price leads to larger scheduled
P crsrv, as compared with 30-minute reserve scenario of Fig-
ure 7. For example, around 1:30PM and 2PM, the extra
reserved capacity requires the system storage to maintain
higher energy levels, as shown in panel 3 of Figure 8.

V. CONCLUSION AND FUTURE WORK

This work provides a means for a utility to interact with
real-time and ancillary markets through a novel hierarchical
coordination scheme for secondary distribution feeders over
a radial primary network feeder. Specially, we develop a two-
layer hierarchical structure in which feeders aggregate DER
flexibility, and design a Grid Market Layer interface that can
reduce the cost of energy procurement, while guaranteeing
operational constraints, by means of strategic participation
in real-time and ancillary service markets. We formulate an
optimization problem and run several trace driven scenarios
that allow us to quantify the benefits of co-optimizing real-
time balancing and reserve scheduling. As excepted, we
observe a notable decrease in procurement cost that becomes
more significant with higher levels of solar penetration.
Strategic participation in both the real-time and ancillary
service (10 and 30 minute reserve) markets is also shown
to reduce net costs.

The proposed framework can be straightforwardly ex-
tended to include both price and resource uncertainty through
a receding horizon framework in which FOL estimates of
resource availability and prices are updated at each time-
step. Other promising directions for future work include
modeling load elasticity by introducing demand curves into
the optimization objective and analyzing price sensitivity to
demand variations.
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