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Multi-Period Network Rate Allocation with
End-to-End Delay Constraints
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Abstract—QoS-aware networking applications such as real-
time streaming and video surveillance systems require nearly
fixed average end-to-end delay over long periods to communicate
efficiently, although may tolerate some delay variations in short
periods. This variability exhibits complex dynamics that makes
rate control of such applications a formidable task. This paper
addresses rate allocation for heterogeneous QoS-aware applica-
tions that preserves the long-term end-to-end delay constraint
while seeking the maximum network utility cumulated over a
fixed time interval. To capture the temporal dynamics of sources,
we incorporate a novel time-coupling constraint in which delay-
sensitivity of sources is considered such that a certain end-to-
end average delay for each source over a pre-specified time
interval is satisfied. We propose an algorithm, as a dual-based
solution, which allocates source rates for the next time interval in
a distributed fashion, given the knowledge of network parameters
in advance. Also, we extend the algorithm to the case that the
problem data is not known fully in advance to capture more
realistic scenarios. Through numerical experiments, we show that
our proposed algorithm attains higher average link utilization
and a wider range of feasible scenarios in comparison with the
best, to our knowledge, rate control schemes that may guarantee
such constraints on delay.

Index Terms—Rate allocation, network utility maximization,
end-to-end delay, convex optimization.

I. INTRODUCTION

NOWADAYS, a plethora of emerging computer appli-
cations exhibit delay-sensitivity and may require some

guarantee on delay. Some of such applications are less sen-
sitive to the instantaneous delay, but rather, concern the end-
to-end delay averaged over some specified time interval. A
notable instance is media streaming where the average end-
to-end delay is obliged not to exceed some threshold to
ensure continuous playback. Several other examples include
some applications of Wireless Sensor Networks (WSNs) and
networked control systems. Due to temporal variations in both
source traffic and network characteristics, in such scenarios it
is crucial to accomplish rate allocation capable of capturing
such dynamic behavior.

Rate allocation in networked systems has been well studied
in the framework of Network Utility Maximization (NUM);
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see, e.g., [2]–[4]. In its simplest form, NUM concerns a
network of sources connected through a set of links of fixed
capacity. To each source, a utility function is associated, which
maps its rate to its perceived quality and/or preference [4]. The
notion of utility function indeed quantifies the satisfaction of
the source for a given amount of allocated resource. Each
source sends packets towards its destination through a subset
of links referred to as its route. The fixed routing structure
and link capacities dictate a set of linear capacity constraints.
The goal of NUM is to find an allocation of source rates
maximizing the network utility given capacity constraints.

A number of studies have thus far incorporated end-to-end
delay into the NUM model [5]–[12]. In these studies, end-to-
end delay either is included in the objective function of the
problem (as in, e.g., [6], [11], [12]) or introduced constraints
(as in, e.g., [5], [8], [9]). We further discuss these two lines of
research in Section II. Amongst the latter works, Qiu et al. [9]
consider a NUM formulation with some constraints on delay.
Interestingly, their delay model delicately integrates with the
NUM as it does not require precise knowledge of underlying
packet arrival models, but rather, relies on the first order
derivative of the delay function. Their formulation, however,
cannot be effectively applied to the case of rate allocation with
average end-to-end delay requirements. The main drawback in
doing so is that [9] considers a one-shot or static allocation,
namely it only concerns the instantaneous delay instead of
the average delay. Therefore, the approach of [9] may result
in a conservative rate allocation, in particular for applications
capable of tolerating instantaneous delay in short intervals.

In order to tailor rate allocation to cases where some
guarantees on average end-to-end delays are required, one
should instead seek a dynamic allocation supporting source
rate fluctuations. To this aim, in the present paper we consider
a multi-period NUM that strives to maximize the network
utility aggregated over a fixed time interval. In this multi-
period formulation, utilities are coupled across time through
end-to-end delay constraints whereas they are made dependent
across sources through capacity constraints. By permitting rate
fluctuations over time, the resulting allocation may sacrifice
network utility in some periods so as to maintain delay while
compensating for it in some other periods. Arguably, this
property essentially enlarges the set of feasible scenarios in
comparison with, e.g., [9]. In addition, it endows us the ability
of maintaining several delay constraints for each source, where
each delay constraint is relevant to a particular time interval.

We make the following contributions:
1. We present a multi-period NUM formulation capturing a

set of general constraints on average end-to-end delay, coupled
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over time. The form of constraints we consider is more general
than those considered in [9], [13], and [14].

2. We present an algorithm (in Section IV) for the pro-
posed multi-period NUM problem, called Delay-Aware Dy-
namic Network Utility Maximization (DA-DNUM), which is
a distributed algorithm that leverages dual decomposition ap-
proach [4], [15]. We provide convergence analysis of the DA-
DNUM algorithm in Theorem 1 and Proposition 2, where we
derive explicit bounds on the step size of the algorithm. This is
in contrast with existing Lyapunov-based convergence analysis
in similar studies (as in, e.g., [9], [13]), where no bound on
the step size is reported. Through numerical experiments, we
examine the performance of the DA-DNUM algorithm and
provide some comparison scenarios to demonstrate its supe-
riority over the relevant existing rate allocation schemes [9],
[13] that are delay-aware variants of the basic single-period
NUM.

3. DA-DNUM relies on the knowledge of network param-
eters for the next time interval in advance. To relax this
requirement, in Section V we provide an algorithm based
on model predictive control [16], which approximately solves
a variant of the problem that relies on the estimate of link
capacities in each time interval.

The rest of this paper is organized as follows. First, in
Section II we briefly review the related work. In Section III,
we introduce the temporal-aware system model, characterize
delay constraints, and state the rate allocation problem. In
Section IV, we present an iterative solution to the rate al-
location problem, present DA-DNUM, and provide theoretical
guarantees on its convergence. Section V is devoted to intro-
duce a solution when the network parameters are not known
in advance. Section VI presents some experimental results.
Finally, in Section VII we provide concluding remarks and
outline some future directions.

A. Basic Notations and Terminologies

We use the following notations. For any vector z (resp. ma-
trix Z), z ≥ 0 (resp. Z ≥ 0) implies that all components
of vector z (resp. matrix Z) are nonnegative. The vector ej
denotes the j-th unit vector. The operator ‖ · ‖ is the standard
Euclidean norm. The domain of a function f is denoted by
dom f . Moreover, 1{A} is the indicator of event A, i.e. it
equals 1 if A occurs; it is 0 otherwise. We use [·]P to denote
the projection onto the set P . Projection onto nonnegative
orthant will be shown by [·]+.

In what follows, we give some necessary definitions that
can be found in, e.g., [17].

Definition 1. A function f(·) is a G-Lipschitz function if

|f(x1)− f(x2)| ≤ G‖x1 − x2‖, ∀x1,x2 ∈ dom f.

Definition 2. A convex function f(·) is κ-strongly convex if
and only if there exists a constant κ > 0 such that the function
f(x)− κ

2 ‖x‖
2 is convex.

Note that if f(·) is twice differentiable, then f(·) is
κ-strongly convex if there exists constant κ such that
∇2f(x)− κI is positive semidefinite.

II. RELATED WORK

In the recent years, many studies have leveraged the NUM
framework to propose efficient protocols and algorithms for
network applications under different types of utility models,
capturing different traffic characteristics, and constraints (we
refer to [2] and the references therein). We may identify
two lines of work that investigated delay within the NUM
framework.

A. Delay as Objective Function

Li et al. [6] consider a NUM formulation in which delay pe-
nalizes the utility function. In other words, the corresponding
NUM seeks to maximize the aggregate utility of sources while
reducing the end-to-end delays. Based on a delay-sensitive
utility function introduced in [18], authors in [11] and [12]
present application-oriented rate allocation schemes employing
an alternative utility definition. Both approaches, however,
fail to provide any guarantees for the delay, thus becoming
improper for QoS-aware applications with hard long term
average delay requirements.

B. Delay as Constraint

In another line of works as in, e.g., [5], [8], [9], [19],
the delay experienced by sources is incorporated into the
NUM formulation as constraints. By introducing the notion of
Virtual Link Capacity Margin (VLCM) to characterize source
delay as constraint of the problem, the authors of [9] and
[13] propose a joint rate allocation and scheduling scheme
in multi-hop wireless networks. Using a different approach
than that of [9], Dogahe et al. [8] present a NUM formulation
to address joint power and rate control under source delay
constraints. Moreover, in [5], using an elegant fluid model of
multi-class flows with different delay requirements, another
distributed and stable delay-aware algorithm is proposed. It
is remarkable that lack of support for temporal variation of
network and source characteristics in single-period NUM may
lead to a broad range of infeasible rate allocation scenarios.
We further investigate this issue in our numerical evaluations
in Section VI.

C. Extensions to Dynamic Network Utility Maximization

We conclude this section by mentioning some studies that
consider the multi-period variant of NUM. To the best of
our knowledge, such a variant is first investigated in [14],
where it is referred to as Dynamic NUM (DNUM). In DNUM,
utilities are coupled across time through delivery contracts,
which impose a set of linear constraints on source rates. The
DNUM framework has been extended in several ways by
subsequent works (e.g., [20], [21]). In [20], focusing on video
streaming applications, temporal variations of source rates are
incorporated into the utility functions. It is remarkable that
though the notion of delivery contracts could capture some
type of QoS constraints, they cannot model end-to-end delay
requirements. To the best of our knowledge, none of the studies
that investigate multi-period NUM problems similarly to [14]
(e.g., [20], [21]) provide guarantees on delay.
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III. MODEL AND PROBLEM FORMULATION

A. Network Model

Our model is based on that of DNUM [14], which considers
rate allocation over a discrete-time interval T = {1, . . . , T}1.
We consider a network formed by a set L = {1, . . . , L} of
links shared among a set S = {1, . . . , S} of sources. We
represent the possibly time-varying routing in the network in
time period t by a routing matrix Rt = [(Rt)ls]L×S , where

(Rt)ls =

{
1 if source s passes through link l at period t
0 otherwise.

We let ctl denote the capacity of link l at period t and ct =
[ctl]l∈L be the corresponding vector of link capacities.

Moreover, we let xst ∈ Xs be the transmission rate of source
s at period t, where we define Xs := [ws,Ws] with ws and Ws

respectively denoting the minimum and the maximum rates of
source s.2 We let X = [xst]S×T be the rate matrix and define
X = {X ∈ RS×T : xst ∈ Xs}.

B. Capacity Constraints

To introduce capacity constraints, we first recall the defini-
tion of link margin variables from [9]. For each link l and time
period t, link margin variable σtl is defined as the difference
between capacity of link l and the maximum allowable flow
passing through it [9]. Unlike [9], however, our setup does
not admit schedulability constraints and hence we proceed to
formulate link margin as follows. Consider capacity constraint
for link l at period t given by∑

s∈S
(Rt)lsxst + σtl = ctl and σtl ≥ 0.

We relax the equality constraint above and establish the
following constraints for link l at period t:∑

s∈S
(Rt)lsxst + σtl ≤ ctl and σtl ≥ 0.

Although the relaxation above constricts resource usage (i.e.,
capacity), it will play an important role in limiting the flow
of link l and thereby proves essentially useful to control the
queuing delay of link l. Introducing σt = [σtl]l∈L and σ =
[σt]t∈T , we then represent the capacity constraints compactly
as

RtXet + σt ≤ ct and σt ≥ 0, ∀t ∈ T . (1)

These constraints constitute a set of 2T×L linear inequalities.

C. Average Delay Constraints

Having defined the notion of link margin, we next introduce
the link delay as a function of link margin. For simplicity of
presentation, we assume that all links have the same delay

1The duration of each period t and the whole time horizon T is an
application-specific design parameter. As an example, in a previous work [20],
where the underlying application is video streaming, each period is set based
on the length of the video frames and the time horizon T is determined
according to the length of GoPs (Group of Pictures).

2The results in this paper can be easily extended to the case where Xs is
dependent on t.

function D(·), which maps link margin variable of a given
link to its queuing delay. That is, D(σtl) equals the delay of
link l at period t. Clearly, the dependence of D(σ) on σ is
determined by the packet arrival process model. For instance,
for M/M/1 queuing model whose packet arrival is a Poisson
process, we have

D(σtl) =
1

σtl
. (2)

Another notable instance is the case of M/G/1 queuing model
whose delay function is given in [8], [22].

In what follows, we make the following assumptions on the
delay function D(·):

A1. |D′(z)| ≤ αD for all z ∈ dom D.
A2. D(·) is κD-strongly convex.

We remark that assumptions A1 and A2 are provided to
facilitate presentation of the analysis in Section IV for the
generic delay function D(·), and we may compute αD and κD
as soon as a problem instance is specified. These assumptions
can be relaxed if lower and upper bounds on σtl for all t
and l are known, which would be possible as soon as delay
function D(·) is specified. This property is satisfied by most
delay functions, e.g., those for M/M/1 and M/G/1 queues. In
particular, we refer to Proposition 2, where we compute αD
and κD in terms of problem parameters for the case of M/M/1
arrival process, whose delay function is given in (2).

In the present study, we only consider queuing delays and
hence, for each source s, we obtain the end-to-end delay by
simply adding up all link delays along the path of s. Writing
φst for the end-to-end queuing delay of source s at period t,
we get

φst =
∑
l∈L

(Rt)lsD(σtl).

We further introduce φs = [φst]t∈T . Next, we define the
constraint on average end-to-end delay as follows: Assume
that source s requires its average end-to-end queuing delay
over some interval of interest T∆ ⊆ T with length ∆ be less
than some constant d. This constraint is formally given by

1

∆

∑
t∈T∆

φst ≤ d. (3)

To model a general scenario for the introduced delay
constraint, we assume that each source s declares Ks delay
constraints of the form (3), indexed by k ∈ Ks = {1, . . . ,Ks}.
Each delay constraint k ∈ Ks concerns a specific time interval,
where overlap between various intervals is allowed. In order
to encode delay constraints of the form (3), for each source s,
we introduce the delay indicator matrix Ms = [(Ms)kt]Ks×T
as follows

(Ms)kt =

{ 1
Gsk

if k-th delay constraint of s concerns t,

0 otherwise,

where Gsk =
∑
t∈T 1{(Ms)kt 6= 0}. Now, we can write the

k-th delay constraint of source s as∑
t∈T

(Ms)ktφst ≤ dsk,
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where dsk is the average delay requirement of source s for its
k-th delay constraint. Note that the elements of every row
of Ms add up to one and therefore, we may interpret the
left-hand side of the constraint above, like that of (3), as the
end-to-end queueing delay of s averaged over time instants
{t ∈ T : (Ms)kt = 1}. Defining ds = [dsk]k∈Ks yields the
following vector representation for delay constraints:

Msφs ≤ ds, ∀s ∈ S. (4)

These constraints constitute a set of
∑
s∈S Ks inequalities

that are nonlinear in σ.

1) An Illustrative Example in Mission-Oriented WSNs: To
motivate the appropriateness of the model above, we provide
a practical application of it in mission-oriented wireless sen-
sor networks (WSN) [23]. In such WSNs, there are several
coexisting applications (henceforth, missions). Let us look
at a surveillance application that employs various types of
sensors such as video, motion detector, and thermal sensors, to
provide assistive ambient intelligence in, e.g., disaster recovery
scenarios.

The naive approach is to require each sensor to periodically
transmit its readings at specific time intervals. Albeit simple
to implement, this approach is inefficient as each mission
might possess particular QoS requirement in terms of end-
to-end delay. For instance, a video mission may demand for
a long-time delay constraint to work efficiently. In contrast,
the thermal mission may report the temperature periodically
on a regular basis and thereby declares a short-term delay
requirement at certain periods.

In order to achieve the best efficiency, it is therefore crucial
to properly schedule transmissions. Besides other parameters,
one could set T∆ = T for the real-time video mission, as it
records and streams data to the sink continuously. The choice
of T∆ for the thermal sensor is different and could be set, for
example in the case of T = 60, as follows: T∆1

= {1, 2, 3},
T∆2 = {21, 22, 23}, and T∆3 = {41, 42, 43}. Hence, the
thermal sensor reports its readings in 3 different steps as
mentioned above.

In summary, one can identify several other application
scenarios (such as in emerging Internet of Things (IoT) or
networked control systems), where different competing goals
(missions in some contexts) with diverse QoS characteristics
coexist under a unified application, but with heterogeneous
requirements.

D. Optimization Problem

We associate a utility function Ust(·) to each source s at
period t. The value Ust(xst) quantifies satisfaction of source
s at period t when it sends data at rate xst in that period [2],
[4]. We make the following assumptions for utility functions:
for all s and t,

A3. Ust(·) is continuous, monotonically increasing, and twice
continuously differentiable.

A4. Ust(·) is αU -Lipschitz.
A5. −Ust(·) is κU -strongly convex.

TABLE I: Key Notations
Notation Definition
T The set of time slots (periods), T := |T |
L The set of links, L := |L|
S The set of sources, S := |S|
Rt The routing matrix at period t
ctl The capacity of link l at period t
σtl Link margin of link l at period t
D(·) The delay function of any link

xst The transmission rate of source s at t
ws The minimum rate of source s
Ws The maximum rate of source s
φst The end-to-end queuing delay of source s at period t

Ks
The index set of delay constraints of source s,
Ks := |Ks|

Ms The delay indicator matrix of source s

dsk
The average delay requirement of source s for its k’s
delay constraint

Ust(·) The utility function of source s at t

Similarly to [14], we define the network utility U(·) as the
sum of all utilities over time horizon T :

U(X) =
∑
s∈S

∑
t∈T

Ust(xst).

Now, we cast the rate allocation problem as

P1: max
X∈X ,σ≥0

U(X)

subject to : RtXet + σt ≤ ct, ∀t ∈ T ,
Msφs ≤ ds, ∀s ∈ S,

φst =
∑
l∈L

(Rt)lsD(σtl), ∀s ∈ S,∀t ∈ T .

First we highlight that constraints of P1 constitute a com-
pact set. Hence, at least one optimal solution exists. Further-
more, P1 is a strongly convex optimization problem, and
hence its optimal solution is unique. We remark that P1 is
nonseparable over time due to coupled delay constraints. It’s
worth noting that in the absence of average delay constraints,
problem P1 degenerates to DNUM problem of [14] without
delivery contracts. In the above formulation, we address QoS
requirements mainly through end-to-end delay constraints and
thus avoid augmenting delivery contracts, i.e. linear constraints
on source rates over T . We stress, however, that the solution
procedure below permits having delivery contracts as well.

The main notations of the paper are summarized in Table I.

IV. OPTIMAL RATE ALLOCATION ALGORITHM

In this section, we solve P1 and develop a distributed
rate allocation algorithm. First, we provide the following
proposition for the strong duality of P1.

Proposition 1. Problem P1 has the strong duality property.

Proof. Problem P1 is a convex problem since (i) objective
function is a nonnegative sum of concave functions (see
Assumptions A3-A5), (ii) capacity constraints are linear, and
(iii) average delay constraints are convex constraints (see As-
sumption A2). In addition, there exist strictly feasible points;
for example we can set xst = ws, for all s. Recall that ws ≥ 0
is the minimum rate requirement of source s, which is the
input to the problem and ensures that there exists at least one
feasible solution. Hence, Slater’s constraint qualification (see,
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L(X,σ,λ,µ) =
∑
t

∑
s

Ust(xst)−
∑
t

λ>t (RtXet − ct + σt)−
∑
s

µ>s (Msφs − ds) (5)

=
∑
t

∑
s

(
Ust(xst)− λstxst

)
−
∑
t

∑
l

(
µtlD(σtl) + λtlσtl

)
+
∑
t

λ>t ct +
∑
s

µ>s ds.

e.g., [15, pp. 226–227]) is satisfied and strong duality holds
for problem P1.

An immediate consequence of Proposition 1 is that we
can solve P1 optimally through its dual. To this end, we
introduce the following notations. We let λt = [λtl]l∈L and
µs = [µsk]k∈Ks respectively denote the Lagrange multipliers
(dual variables) associated to the capacity constraints for
period t and average delay constraints for source s. Moreover,
we let λ = [λt]t∈T and µ = [µs]s∈S .

We introduce the partial Lagrangian of P1 in (5), shown at
the top of this page, where

λst :=
∑
l

(Rt)lsλtl,

µtl :=
∑
s

∑
k∈Ks

(Ms)kt(Rt)lsµsk.

The dual function of P1, denoted by g(λ,µ), is then given
by:

g(λ,µ) = max
X∈X ,σ≥0

L(X,σ,λ,µ)

= max
X∈X

∑
t

∑
s

(
Ust(xst)− λstxst

)
+ max

σ≥0

∑
t

∑
l

(
µtlD(σtl) + λtlσtl

)
. (6)

Thus, the dual problem associated to P1 is [17]:

D1 : min
λ≥0,µ≥0

g(λ,µ).

Given λ and µ, let X? = [x?st]T×S and σ?t = [σ?tl]l∈L be the
maximizers of maximization problems in (6). To derive these
solutions, first note that partial derivatives of the Lagrangian
are given by:

∂L

∂xst
= U ′st(xst)− λst, ∀s,∀t,

∂L

∂σtl
= µtlD′(σtl) + λtl, ∀t,∀l.

The maximizers are stationary points of the Lagrangian. We
therefore get, through preliminary manipulations,

x?st(λ) =
[
U ′−1
st (λst)

]
Xs
, ∀s,∀t,

σ?tl(λ,µ) =

[
D′−1

(
−λtl
µtl

)]+

, ∀t, ∀l. (7)

One consequence of strong convexity of P1 is that the
dual function g(λ,µ) is differentiable in its domain (see,
e.g., [17]). Hence, we can employ the gradient projection
method [17] to solve D1. We therefore use Danskin’s Theorem

[17, Proposition B.25],3 to obtain partial derivatives of dual
function g(λ,µ):

∂g

∂λtl
= ctl − σtl −

∑
s

(Rt)lsxst, ∀l,∀t,

∂g

∂µsk
= dsk −

∑
t

∑
l

(Ms)kt(Rt)lsD(σtl), ∀s,∀k ∈ Ks.

Hence, we obtain the following relation for the update of the
dual variable for link l at time t:

λ
(j+1)
tl =

[
λ

(j)
tl + γ

(∑
s

(Rt)lsx
(j)
st + σ

(j+1)
tl − ctl

)]+

,

where x(j)
st = x?st(λ

(j)), σ(j+1)
tl = σ?tl(λ

(j),µ(j)), and γ > 0
is a sufficiently small step size, which will be determined later.
Similarly, for each source s and k ∈ Ks, we update µsk as
follows:

µ
(j+1)
sk =

[
µ

(j)
sk + γ

(∑
t

∑
l

(Ms)kt(Rt)lsD(σ
(j)
tl )− dsk

)]+

.

Note that it is crucial to choose step size γ properly to guar-
antee the convergence of the iterative solution above. Given
appropriate γ, update equations for dual variables converge to
minimizers of D1. Strong duality then guarantees that optimal
values of D1 and P1 coincide and that X? and σ? can be
obtained accordingly. The following theorem determines the
values of the step size γ that guarantee the convergence of the
iterative solution to the optimal solution of P1 for a generic
delay function D(·).

Theorem 1. Assume that γ satisfies 0 < γ < 2
Q , where

Q :=
1

µminκD

1 + α2
DTL

(∑
s

Ks

)2

+ 2αD

√
TL
∑
s

Ks


+
LS

κU
(8)

and µmin = mint,l µ
tl. Then, starting from any initial fea-

sible point, the limit point (X?, σ?, µ?, λ?) of the sequence
{X(j), σ(j), µ(j), λ(j)}j≥1 generated by the aforementioned
iterative solution is primal-dual optimal and (X?, σ?) is the
unique optimal solution to P1.

Proof. See Appendix A.

We stress that the parameter µmin is necessarily positive,
since otherwise σtl for some (t, l) would tend to zero and
consequently, some delay constraint in (4) would become
violated.

3The Danskin’s Theorem provides a formula for the derivative of functions
of the form f(z) = maxy∈Y φ(z, y), where Y is a compact set and φ(., y)
is a convex function for every y ∈ Y [17, Proposition B.25].
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When delay function D(·) is specified, the parameters µmin,
αD, and κD can be expressed explicitly. As a consequence,
an explicit bound on the step size γ can be obtained. The
following proposition provides such an explicit bound for the
case of M/M/1 packet arrival model. To set up the notation,
let

dmin = min
s,k∈Ks

dsk, dmax = max
s,k∈Ks

dsk, cmax = max
t,l

ctl.

Proposition 2. For the case of M/M/1 delay model, we have

µmin ≥
LT 2αU
d2

min

, αD = T 2d2
max, κD =

2

c3max

.

Proof. See Appendix B.

Next we compare Theorem 1 with [9, Proposition 2].
Theorem 1 relies on Descent Lemma [17], which yields a
step size bound guaranteeing convergence. In contrast, [9,
Proposition 2] leverages a Lyapunov approach to guarantee
convergence to the optimal solution. As such, it does not
necessarily lead to an explicit bound on the step size, but
rather, establishes convergence provided that the step size is
sufficiently small. Arguably, the need for an explicit step size,
similar to those provided in Theorem 1 and Proposition 2, is
crucial from a practical standpoint. We thus believe that not
only does Theorem 1 sound more interesting, but it also could
be of more practical impact.

A. The DA-DNUM Algorithm

Next, we give a distributed iterative algorithm, named
Delay-Aware Dynamic Network Utility Maximization (DA-
DNUM), which is based on a distributed implementation of
the above iterative solution. As gradient-based algorithms are
not finitely convergent, the DA-DNUM algorithm relies on
a parameter th to determine the stopping criterion of the
iterative procedure. The DA-DNUM algorithm relies on both
the knowledge of network parameters in advance of time
interval T and the ability of explicitly/implicitly exchanging
dual variables between sources and links (more precisely,
between each source s and links on the path of s). The pseudo-
code of DA-DNUM is shown in Algorithm 1.

V. A SOLUTION WITH LIMITED FUTURE KNOWLEDGE

The solution presented in Sections IV is based on the
assumption that the problem data (input parameters) for the
entire time horizon is available ahead of time. Dependence of
these solutions on the precise knowledge of future network
parameters stimulates devising another scheme that efficiently
works under uncertainty of the parameters. In this section, we
extend our solution in a way such that the problem data is not
fully known in advance. Without loss of generality, we assume
that only the link capacities are revealed at the beginning
of each period. Our approach in this section is based on a
causality constraint so that the source rates at period t are
a function of the link capacities up to period t. We further
note that this is a convex stochastic problem, where the goal
is to maximize the expected aggregated utility of all sources
subject to the capacity, average delay, and causality constraints.

Algorithm 1 DA-DNUM Algorithm
Collect network parameters for the next time horizon T .
Initialize X0,σ0,λ0, and µ0. Set j = 0.

while max
s,l,t

{
|x(j+1)

st − x(j)st |, |σ
(j+1)
tl − σ(j)

tl |
}
> th do

At each link l, for each period t, obtain µtl,(j) and update:

σ
(j+1)
tl =

[
D′−1

(
−

λ
(j)
tl

µtl,(j)

)]+
,

λ
(j+1)
tl =

[
λ
(j)
tl + γ

(∑
s

(Rt)lsx
(j)
st + σ

(j+1)
tl − ctl

)]+
.

At each source s, for each period t, obtain λst,(j) and compute:

x
(j+1)
st =

[
U ′−1

st

(
λst,(j)

)]
Xs
,

µ
(j+1)
sk =

[
µ
(j)
sk + γ

(∑
t

∑
l

(Ms)kt(Rt)lsD(σ
(j)
tl )− dsk

)]+
.

j ← j + 1

end while

Although, similarly to the conventional NUM problems this
problem could be efficiently solved by centralized approaches,
here we are interested in decentralized ones.

To this aim, we construct our solution based on Model
Predictive Control (MPC) [16]. To calculate the source rates
(xsts) and link margin values (σtls) for any particular period
τ , instead of solving problem P1, we solve the following
problem:

P2: max
xst,s∈S,t∈T τ

∑
t∈T τ

∑
s

Ust(xst)

subject to :

RτXeτ + στ ≤ cτ ,

RtXet + σt ≤ ĉ(t|τ), ∀t ∈ T τ ,
Msφs ≤ ds, ∀s ∈ S,

φst =
∑
l

(Rt)lsD(σtl), ∀s ∈ S,∀t ∈ T ,

where
T τ = {τ + 1, . . . , T}

and where

ĉ(t|τ) = E[ct|c1, . . . , cτ ], t ∈ T τ

is the expected value of link capacities, given the entire
information available at period τ . Consequently, in problem
P2, at any period τ the whole information about link capacities
up to (and including) period τ is revealed. Furthermore, for
the future periods we use the conditional mean values of link
capacities. Since each source can declare several average delay
constraints, it is conceivable that some delay constraints are
expired before beginning of period τ , i.e., the cases where
the active interval of the constraint occurs within the first τ
periods. Another situation is when a constraint has already
been active. That is, the start time is “≤ τ”, while the
final time is “≥ τ”. Here, the source rate for periods ≤ τ



2325-5870 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2017.2677202, IEEE
Transactions on Control of Network Systems

HAJIESMAILI et al.: MULTI-PERIOD NETWORK RATE ALLOCATION WITH END-TO-END DELAY CONSTRAINTS 7

are already calculated. Let us denote these source rates by
x′st, s ∈ S, t ∈ {1, . . . , τ}. Then, the average delay inequality
is interpreted as follows: the source rates for t < τ are taken
to be x′st. And so, this part is fixed and the constraint should
be satisfied for the remaining part at period t ≥ τ .

Finally, problem P2 is a particular version of problem P1
and the optimal algorithm presented in Section IV could be
leveraged to find its optimal solution. However, in each period
τ , we pick the optimal source rate and link margin values for
just the time slot τ and then we solve the problem again for
the remaining time slots. For each time slot, the optimal values
of the previous periods are used as input parameters.

VI. NUMERICAL EVALUATION

This section is devoted to the illustration of our numerical
experiments. First, we examine DA-DNUM on a network
consisting of few links and nodes. It is followed by the
description of two comparison scenarios to investigate the
scalability of DA-DNUM and its superiority over existing
algorithms.

A. Experiment 1: A Simple Topology

In order to facilitate the discussion of the results, we have
chosen a network with time-invariant routing and topology
shown in Fig. 1, and set T = 10. For all t ∈ {1, . . . , 10},
link capacities ct1 and ct4 are drawn uniformly at random
from [4, 6], and ct2 and ct3 are sampled uniformly at random
from [4, 10]. We consider logarithmic utility functions, namely
Ust(xst) = log xst for all s and t, which is widely used in
the literature (see, e.g., [4]). Moreover, we assume M/M/1
queuing model for all links that corresponds to delay function
D(z) = 1

z . We give delay indicator matrices as well as vectors
ds for all s below:

M1 =
1

3
×
[
1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0

]
,

M2 =
1

6
×
[
1 1 1 1 1 1 0 0 0 0

]
,

M3 =
1

6
×
[
0 0 1 1 1 1 1 1 0 0

]
,

M4 =
1

4
×
[
0 0 1 1 1 1 0 0 0 0

]
,

d1 = [2 1]
>
, d2 = d3 = 2, d4 = 2.5.

We stress that the above delay indicator matrices imply that
for t = 9, 10, there is no delay constraint and hence, for these
periods P1 degenerates to DNUM of [14] without delivery
contracts.

Fig. 2 displays the rate allocation results obtained from
DA-DNUM with step size γ = 0.01 and th = 0.01. For the

Link 1

Source 1

Link 2 Link 3

Source 3

Source 4

Link 4

Source 2

Fig. 1: Network Topology, Experiment 1

sake of comparison, Fig. 2 also shows the rate allocation result
of DNUM (without delivery contracts), which is obtained by
solving P1 after removal of delay constraints. Fig. 2(a) depicts
final source rates of the two cases. As expected, Fig. 2(a)
exhibits the same values for both DA-DNUM and DNUM for
t = 9, 10, since there is no delay constraint associated to these
periods. By contrast, for t = 1, . . . , 8 source rates obtained by
DA-DNUM are lower than those obtained by DNUM. This
stems from the existence of at least one delay constraint in
any of these periods.

End-to-end queuing delays φst for all s and t are depicted
in Fig. 2(b). To achieve higher system-wide aggregate utility,
DA-DNUM allows some fluctuations in source delays during
various periods, while guaranteing that average delays do not
exceed ds. Such a flexibility in rate allocation, which reflects
the opportunistic behavior of the algorithm, can yield a wider
range of feasible rate allocation schemes in comparison with
the single-period NUM, which will be discussed in the next
subsection. Finally, Fig. 2(c) shows link traffics, link margins,
and the amount of under-utilized link capacities. Clearly, at
periods t = 9, 10, all links possess zero link margins. On the
other hand, for t = 1, . . . , 8, positive values for link margin
variables (for at least one link) show that there is at least one
active delay constraint imposed by the sources.

We also investigate the effectiveness of the MPC-based
solution proposed in Section V. To this end, we consider a
network with the same topology as in the previous simulation,
and assume that link capacities are not known perfectly. More
precisely, we assume that for any t and l, our knowledge of
ctl is no more than the support of distribution from which
ctl is generated (e.g., we only know that ct2 is drawn from
Unif(4, 10) distribution4).

In the lack of knowledge of link capacities, instead of
problem P1, we solve problem P2 with the following es-
timates: for any τ , we use ĉ1(t|τ) = ĉ4(t|τ) = 5 and
ĉ2(t|τ) = ĉ3(t|τ) = 7. We compare the results of problem P2
with the knowledge of the current and the previous periods
with that of problem P1, where the entire knowledge of the
horizon is available. The resulting source rates and link margin
values are quite similar. To illustrate the accuracy of the
suboptimal MPC-based solution, we report the utility values
obtained by the two solutions. The aggregated utility value for
MPC-based solution is 36.16, whereas that obtained by DA-
DNUM (which is the optimal value of problem P1) is 37.01,
which indicates 2.2% difference.

B. Experiment 2: Comparison Scenario

Next, we compare DA-DNUM with the algorithm proposed
in [9] (by assuming fixed capacities) in a large-scale scenario.
We remark that the algorithm proposed in [9] is based on
the single-period version of NUM (the basic NUM without
temporal considerations) that is tailored to delay-sensitive
cases. Consequently, single-period NUM in algorithm of [9]
persuades us to solve the NUM for all time instants in T (i.e.,

4We use Unif(a, b) to denote the uniform distribution over [a, b] for all
a, b ∈ R with a < b.
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Fig. 2: Results of Experiment 1

T separate problems). We consider a line topology shown in
Fig. 3, which has 200 links and 198 sources with the following
routing matrix:

Rt =



1 1 0 0 . . . 0 0
1 1 1 0 . . . 0 0
1 1 1 1 . . . 0 0
1 1 1 1 . . . 0 0
1 0 1 1 . . . 0 0
...

...
...

...
. . .

...
...

1 0 0 0 . . . 0 1


.

The rest of the parameters are listed in Table II. To clearly
exhibit the behavior of DA-DNUM, we associate average delay
constraints only for source 1 (i.e., the source traversing all
links) and source 2 (namely, the one passing through the first
4 links).

To exhibit the flexibility of DA-DNUM, in this experiment
we enforce w1 = 5 only for period 2, that is source 1 has a
rate requirement of 5 only at period 2. The aforementioned
minimum rate demand is in conflict with the average delay
requirement since the higher rate results in higher end-to-end
delay according to the limited capacity of links. Nonetheless,
DA-DNUM easily remedies this conflicting situation by as-
signing the declared minimum rate to source 1 at t = 2,
thus enduring a larger short-term delay (around 85 instead of
d1 = 50). Thanks to the constraints coupled over time, DA-
DNUM allocates proper rates to this source in other periods
so as to maintain the average delay below 50. In contrast, the
single-period algorithm of [9] fails in this scenario since the
underlying NUM becomes infeasible. This simple experiment
indicates relatively wider set of feasible problems of DA-
DNUM. One may construct several other feasible scenarios
for DA-DNUM that are infeasible for the problem of [9].

S 2

S 1

S 198
1 2 3 4 197 198 199 200

S 3
S 4

S 5

S 197
S 196

S 195

Fig. 3: Network Topology, Experiment 2

TABLE II: Parameters of Experiment 2

Parameter Value
S 198
L 200
T 50

ctl, ∀t,∀l i.i.d. Unif(8, 12) kbps
K1,K2 1
M1,M2

1
50

11×50

Ks, ∀s 6= 1, 2 0
Ms, s ∈ {3, . . . , 198} [0]1×50

d1, d2 50

TABLE III: Parameters of Experiments 3

Parameter Value
S 20
L 20
T 20

ctl, ∀t,∀l 20 kbps
ds, ∀s i.i.d. Unif(4, 6)

C. Experiment 3: Random Topology

Now we examine DA-DNUM for a more complex randomly
generated topology. We run DA-DNUM and algorithm of
[9] for a scenario with a random topology comprising 20
sources and 20 links (see Table III for the parameters). In
this experiment, we associate only one delay constraint to
each source. The delay constraint for each source is defined
over time interval [ti, tf ], where for each source ti and tf
are generated independently of other sources in the following
way: first a time slot ti is drawn uniformly at random from
T . If ti < T , we then sample tf uniformly at random from
{ti + 1, . . . , T}.

As it allows temporal fluctuations in source delays, DA-
DNUM yields slightly better link utilization compared to the
algorithm of [9]: The under-utilized link capacity averaged
over all links and all periods for the algorithm of [9] is 4.06,
whereas that of DA-DNUM is 3.91. Thus, DA-DNUM reduces
the average under-utilized link capacity by 3.7%. The two
comparison experiments therefore indicate both wider range
of feasibility and better resource utilization of DA-DNUM
against existing single-period approaches.

VII. CONCLUSION AND FUTURE DIRECTIONS

We studied a multi-period NUM problem with source-driven
time-coupled constraints on average end-to-end delay and ca-
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pacity constraints. We proposed a distributed algorithm, called
DA-DNUM, and provided its convergence analysis. Numerical
experiments demonstrated that, compared to existing schemes,
DA-DNUM admits relatively wider feasible scenarios along
with higher resource utilization. This enhancement originated
from multi-period problem setup that allows short-term delay
fluctuations while keeping long-term delay values around the
required one.

As future work, we plan to extend this work to the case
of wireless scenarios, where joint delay-aware rate allocation
and link scheduling is considered. Furthermore, we would like
to investigate the case of non-convex delay functions, which
is motivated by the case of more complicated packet arrival
models. Finally, another interesting direction is to solve the
problem using the state-of-the-art second-order methods to
achieve faster convergence.
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APPENDIX A
PROOF OF THEOREM 1

A. Preliminaries

We briefly overview convergence of the gradient method
with constant step size for solving the problem minz f(z),
where f is convex. Let z? be the minimizer of the problem. If
∇f(z) is a Q-Lipschitz function, then the sequence {z(k)}k≥0

defined by
z(k+1) = z(k) − γ∇f(z(k)),

converges to z? provided that 0 < γ < 2
Q (see, e.g., [24,

Proposition 3.4]). Moreover, by the nonexpansive property of
the projection operator [17, Proposition B.11], convergence of
the above sequence implies convergence of {z̃(k)}k≥0, with

z̃(k+1) = [z̃(k) − γ∇f(z̃(k))]+

to the minimizer of minz≥0 f(z).
Let us define ν = [λ1, . . . ,λT ,µ1, . . . ,µS ]. By the above

result, to prove the convergence of the algorithm, it suffices to
find a constant Q such that ∇g(ν) is Q-Lipschitz. Therefore,
as a consequence of [25, Theorem 9.19], we only need to show
that the Hessian of g(ν) in bounded in the `2-norm.

B. Proof of the Theorem

Proof. The Hessian of g(ν), henceforth denoted by H , is a
(TL+

∑
sKs)-by-(TL +

∑
sKs) matrix, whose ij-element

is:
Hij =

∂2g(ν)

∂νi∂νj
.
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Recall that the partial derivatives of g(ν) w.r.t. dual vari-
ables, where they exist, are given by

∂g(ν)

∂λtl
= ctl − σtl −

∑
s

(Rt)lsxst, ∀t,∀l,

∂g(ν)

∂µsk
= dsk −

∑
t

∑
l

(Ms)kt(Rt)lsD(σtl), ∀s,∀k,

where

xst =
[
U ′−1
st (λst)

]
Xs
,

σtl =

[
D′−1

(
−λtl
µtl

)]+

.

Before proceeding to calculate the elements of the Hessian,
observe that we have for each source s and time t:

∂xst
∂λst

=
∂U ′−1

st (λst)

∂λst
= −βst(λ),

where

βst(λ) =

{ −1
U ′′
st(xst(λ)) if U ′st(Ws) ≤ λst ≤ U ′st(ws),

0 otherwise.

Moreover, for each link l and time t, we have that:

∂σtl
∂λtl

=
∂

∂λtl
D′−1

(
−λtl
µtl

)
= − 1

µtlD′′(σtl)
,

∂σtl
∂µtl

=
∂

∂µtl
D′−1

(
−λtl
µtl

)
=

λtl
(µtl)2D′′(σtl)

=
−D′(σtl)
µtlD′′(σtl)

,

where the last equality follows from (7). Hence, the elements
of the Hessian are given by5:

∂2g(ν)

∂λtl∂µsk
= − ∂

∂λtl

∑
t′

∑
l′

(Ms)kt′(Rt′)l′sD(σt′l′)

= −(Ms)kt(Rt)ls ·
∂σtl
∂λtl

·D′(σtl)

= (Ms)kt(Rt)ls ·
D′(σtl)

µtlD′′(σtl)
,

∂2g(ν)

∂µs′k′∂µsk
= − ∂

∂µs′k′

∑
t

∑
l

(Ms)kt(Rt)lsD(σtl)

= −
∑
t

∑
l

(Ms)kt(Rt)ls
∂σtl
∂µs′k′

·D′(σtl)

= −
∑
t

∑
l

(Ms)kt(Rt)ls
∂µtl

∂µs′k′
· ∂σtl
∂µtl

·D′(σtl)

=
∑
t

∑
l

(Ms)kt(Ms′)k′t(Rt)ls(Rt)ls′ ·
(D′(σtl))

2

µtlD′′(σtl)
,

5We note that in points satisfying λst = U ′st(ws) or λst = U ′st(Ws), the
Hessian ∇2g may not exist. In these points, the gradient should be replaced
by subgradients. Similarly to [4], to preserve the simplicity of the argument,
such issues are ignored in this paper (cf. discussion on page 871 of [4]).

∂2g(ν)

∂λt′l′∂λtl
= − ∂σtl

∂λt′l′
−
∑
s

(Rt)ls
∂xst
∂λt′l′

=
1{(t′, l′) = (t, l)}

µtlD′′(σtl)
−
∑
s

(Rt)ls
∂λst

∂λt′l′
· ∂xst
∂λst

=
1{(t′, l′) = (t, l)}

µtlD′′(σtl)
+
∑
s

(Rt)ls(Rt)l′sβst(λ)1{t′ = t}.

Hence, we derive the following bounds:∣∣∣∣ ∂2g(ν)

∂λtl∂µsk

∣∣∣∣ ≤ αD
µminκD

, (9)

∣∣∣∣ ∂2g(ν)

∂µs′k′∂µsk

∣∣∣∣ ≤ TLα2
D

µminκD
, (10)

∣∣∣∣ ∂2g(ν)

∂λt′l′∂λtl

∣∣∣∣ ≤ 1{(t′, l′) = (t, l)}
µminκD

+
S

κU
1{t′ = t}. (11)

Using the above inequalities, we derive an upper bound for
the `2-norm of the Hessian H . Let us decompose H as follows

H =

[
H(λλ) H(µλ)

H(λµ) H(µµ)

]
=

[
H(λλ) 0

0 0

]
+ 2

[
0 H(µλ)

0 0

]
+

[
0 0

0 H(µµ)

]
,

where H(µλ) = H(λµ) follows from the symmetry of the
Hessian. Recall that the `2-norm of any matrix A satisfies:

‖A‖2 ≤
√
‖A‖1‖A‖∞,

where ‖A‖1 is the maximum column-sum matrix norm of A,
and ‖A‖∞ is the maximum row-sum matrix norm [26]. Hence,
by subadditivity of norm function, we have

‖H‖2 ≤
√
‖H(λλ)‖1‖H(λλ)‖∞ + 2

√
‖H(µλ)‖1‖H(µλ)‖∞

+
√
‖H(µµ)‖1‖H(µµ)‖∞

= ‖H(λλ)‖1 + 2
√
‖H(µλ)‖1‖H(µλ)‖∞ + ‖H(µµ)‖1,

(12)

where the last equality follows from the symmetry of H(λλ)

and H(µµ). Using (9)-(11), we derive the following bounds:

‖H(λλ)‖1 ≤
1

µminκD
+
LS

κU
,

‖H(µµ)‖1 ≤
α2
DTL

µminκD

(∑
s

Ks

)2

,

‖H(µλ)‖1 ≤
αD

µminκD

∑
s

Ks,

‖H(µλ)‖∞ ≤
αDTL

µminκD
.

Putting these together with (12), we obtain ‖H‖2 ≤ Q, where
Q is defined in (8). Hence, the Hessian of g(ν) is upper
bounded in the `2-norm by Q. By [25, Theorem 9.19], we
deduce that ∇g(ν) is Q-Lipschitz. As a consequence, if we
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require γ ∈ (0, 2
Q ), the algorithm converges to the primal-dual

optimal point of P1, and the proof is concluded.

APPENDIX B
PROOF OF PROPOSITION 2

Proof. First we derive a lower bound on µtl for all t and l so
that delay constraints (4) at the optimal point, restated below,
are satisfied:∑

t

∑
l

(Ms)kt(Rt)lsD(σ?tl) ≤ dsk, ∀s,∀k ∈ Ks. (13)

In the case of M/M/1 packet arrival model, the delay
function is D(z) = 1/z. It then follows from (7) that for
any t and l, D(σ?tl) =

√
λtl/µtl, and therefore, the l.h.s. of

(13) reads∑
t

∑
l

(Ms)kt(Rt)lsD(σ?tl) =
∑
t

∑
l

(Ms)kt(Rt)ls

√
λtl
µtl

≤
∑
t

∑
l

√
(Rt)lsλtl

√
(Rt)ls
µtl

≤
∑
t

√∑
l

(Rt)lsλtl

√∑
l

(Rt)ls
µtl

=
∑
t

√
λst

√∑
l

(Rt)ls
µtl

,

where we use the fact that (Rt)ls ∈ {0, 1} and (Ms)kt ≤ 1 in
the first inequality, and Cauchy-Schwarz inequality in the last
line. Hence,

µtl ≥ LT 2αU
d2

min

, ∀t, ∀l, (14)

implies:∑
t

∑
l

(Ms)kt(Rt)lsD(σ?tl) ≤
∑
t

√
λst

√
d2

min

LT 2αU

∑
l

(Rt)ls

≤ dmin

T

∑
t

√
U ′st(x

?
st)

√
1

LαU

∑
l

(Rt)ls

≤ dmin

≤ dsk.

Hence, the lower bound on µtl in (14) guarantees that con-
straints (13) are satisfied and thus, we may choose µmin =
LT 2αUd

−2
min.

Now we obtain upper and lower bounds on αD and κD,
respectively. Observe that D′(z) = −1/z2 and D′′(z) =
2/z3 so that |D′(z)| = (D(z))2. Moreover, we have that
(Ms)kt ≥ 1/T for all s and k ∈ Ks. Hence, in view of
constraints (3), any feasible σtl satisfies:

D(σtl) ≤ T max
s,k∈Ks

dsk ≤ Tdmax.

Hence, for all t and l,

|D′(σtl)| = (D(σtl))
2 ≤ T 2d2

max, (15)

so that we may select αD = T 2d2
max. Furthermore, constraints

(1) imply that σtl ≤ ctl ≤ cmax for all t and l. Hence,

D′′(σtl) ≥
2

c3max

,

so that we may select κD = 2c−3
max, and the proof is completed.
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